Suppr超能文献

针对卧床患者的床边电缆驱动下肢康复机器人的建模与控制

Modeling and control of a bedside cable-driven lower-limb rehabilitation robot for bedridden individuals.

作者信息

Wang Daoyu, Li Jicai, Jian Zhuo, Su Hao, Wang Hongbo, Fang Fanfu

机构信息

Academy for Engineering and Technology, Fudan University, Shanghai, China.

Shanghai ZD Medical Technology Co., Ltd., Shanghai, China.

出版信息

Front Bioeng Biotechnol. 2023 Nov 23;11:1321905. doi: 10.3389/fbioe.2023.1321905. eCollection 2023.

Abstract

Individuals with acute neurological or limb-related disorders may be temporarily bedridden and unable to go to the physical therapy departments. The rehabilitation training of these patients in the ward can only be performed manually by therapists because the space in inpatient wards is limited. This paper proposes a bedside cable-driven lower-limb rehabilitation robot based on the sling exercise therapy theory. The robot can actively drive the hip and knee motions at the bedside using flexible cables linking the knee and ankle joints. A human-cable coupling controller was designed to improve the stability of the human-machine coupling system. The controller dynamically adjusts the impedance coefficient of the cable driving force based on the impedance identification of the human lower-limb joints, thus realizing the stable motion of the human body. The experiments with five participants showed that the cable-driven rehabilitation robot effectively improved the maximum flexion of the hip and knee joints, reaching 85° and 90°, respectively. The mean annulus width of the knee joint trajectory was reduced by 63.84%, and the mean oscillation of the ankle joint was decreased by 56.47%, which demonstrated that human joint impedance identification for cable-driven control can effectively stabilize the motion of the human-cable coupling system.

摘要

患有急性神经或肢体相关疾病的个体可能会暂时卧床不起,无法前往物理治疗科室。由于住院病房空间有限,这些患者在病房内的康复训练只能由治疗师手动进行。本文提出了一种基于悬吊运动疗法理论的床边缆索驱动下肢康复机器人。该机器人可通过连接膝关节和踝关节的柔性缆索在床边主动驱动髋关节和膝关节运动。设计了一种人机缆索耦合控制器,以提高人机耦合系统的稳定性。该控制器根据人体下肢关节的阻抗识别动态调整缆索驱动力的阻抗系数,从而实现人体的稳定运动。对五名参与者进行的实验表明,缆索驱动康复机器人有效提高了髋关节和膝关节的最大屈曲度,分别达到85°和90°。膝关节轨迹的平均环宽减少了63.84%,踝关节的平均摆动减少了56.47%,这表明用于缆索驱动控制的人体关节阻抗识别可以有效稳定人机缆索耦合系统的运动。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c6c/10702241/0a5019360a99/fbioe-11-1321905-g001.jpg

相似文献

1
Modeling and control of a bedside cable-driven lower-limb rehabilitation robot for bedridden individuals.
Front Bioeng Biotechnol. 2023 Nov 23;11:1321905. doi: 10.3389/fbioe.2023.1321905. eCollection 2023.
2
Robust control of a cable-driven rehabilitation robot for lower and upper limbs.
ISA Trans. 2022 Jun;125:268-289. doi: 10.1016/j.isatra.2021.07.016. Epub 2021 Jul 12.
3
4
[Study on the center-driven multiple degrees of freedom upper limb rehabilitation training robot].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2018 Jun 25;35(3):452-459. doi: 10.7507/1001-5515.201703052.
5
A Cable-Driven Three-DOF Wrist Rehabilitation Exoskeleton With Improved Performance.
Front Neurorobot. 2021 Apr 8;15:664062. doi: 10.3389/fnbot.2021.664062. eCollection 2021.
7
Design and motion control of exoskeleton robot for paralyzed lower limb rehabilitation.
Front Neurosci. 2024 Feb 21;18:1355052. doi: 10.3389/fnins.2024.1355052. eCollection 2024.
8
Modeling and Control of a Cable-Driven Rotary Series Elastic Actuator for an Upper Limb Rehabilitation Robot.
Front Neurorobot. 2020 Feb 25;14:13. doi: 10.3389/fnbot.2020.00013. eCollection 2020.
9
Stiffness Analysis of Parallel Cable-Driven Upper Limb Rehabilitation Robot.
Micromachines (Basel). 2022 Feb 2;13(2):253. doi: 10.3390/mi13020253.

本文引用的文献

1
Performance-Based Hybrid Control of a Cable-Driven Upper-Limb Rehabilitation Robot.
IEEE Trans Biomed Eng. 2021 Apr;68(4):1351-1359. doi: 10.1109/TBME.2020.3027823. Epub 2021 Mar 18.
3
Locomotor Adaptation to an Asymmetric Force on the Human Pelvis Directed Along the Right Leg.
IEEE Trans Neural Syst Rehabil Eng. 2016 Aug;24(8):872-881. doi: 10.1109/TNSRE.2015.2474303. Epub 2015 Sep 11.
4
Post-Stroke Lower Limb Spasticity Alters the Interlimb Temporal Synchronization of Centre of Pressure Displacements Across Multiple Timescales.
IEEE Trans Neural Syst Rehabil Eng. 2015 Sep;23(5):786-95. doi: 10.1109/TNSRE.2014.2353636. Epub 2014 Sep 12.
5
Effects of sling exercise therapy on trunk muscle activation and balance in chronic hemiplegic patients.
J Phys Ther Sci. 2014 May;26(5):655-9. doi: 10.1589/jpts.26.655. Epub 2014 May 29.
6
Physical rehabilitation approaches for the recovery of function and mobility following stroke.
Cochrane Database Syst Rev. 2014 Apr 22;2014(4):CD001920. doi: 10.1002/14651858.CD001920.pub3.
7
The effect of trunk stabilization exercises using a sling on the balance of patients with hemiplegia.
J Phys Ther Sci. 2014 Feb;26(2):219-21. doi: 10.1589/jpts.26.219. Epub 2014 Feb 28.
8
Early exercise in critically ill patients enhances short-term functional recovery.
Crit Care Med. 2009 Sep;37(9):2499-505. doi: 10.1097/CCM.0b013e3181a38937.
9
The effect of the GENTLE/s robot-mediated therapy system on arm function after stroke.
Clin Rehabil. 2008 May;22(5):395-405. doi: 10.1177/0269215507085060.
10
Design, implementation and clinical tests of a wire-based robot for neurorehabilitation.
IEEE Trans Neural Syst Rehabil Eng. 2007 Dec;15(4):560-9. doi: 10.1109/TNSRE.2007.908560.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验