Suppr超能文献

一种具有改进性能的电缆驱动三自由度手腕康复外骨骼。

A Cable-Driven Three-DOF Wrist Rehabilitation Exoskeleton With Improved Performance.

作者信息

Shi Ke, Song Aiguo, Li Ye, Li Huijun, Chen Dapeng, Zhu Lifeng

机构信息

School of Instrument Science and Engineering, Southeast University, Nanjing, China.

出版信息

Front Neurorobot. 2021 Apr 8;15:664062. doi: 10.3389/fnbot.2021.664062. eCollection 2021.

Abstract

This paper developed a cable-driven three-degree-of-freedom (DOF) wrist rehabilitation exoskeleton actuated by the distributed active semi-active (DASA) system. Compared with the conventional cable-driven robots, the workspace of this robot is increased greatly by adding the rotating compensation mechanism and by optimizing the distribution of the cable attachment points. In the meanwhile, the efficiency of the cable tension is improved, and the parasitic force (the force acting on the joint along the limb) is reduced. Besides, in order to reduce the effects of compliant elements (e.g., cables or Bowden cables) between the actuators and output, and to improve the force bandwidth, we designed the DASA system composed of one geared DC motor and four magnetorheological (MR) clutches, which has low output inertia. A fast unbinding strategy is presented to ensure safety in abnormal conditions. A passive training algorithm and an assist-as-needed (AAN) algorithm were implemented to control the exoskeleton. Several experiments were conducted on both healthy and impaired subjects to test the performance and effectiveness of the proposed system for rehabilitation. The results show that the system can meet the needs of rehabilitation training for workspace and force-feedback, and provide efficient active and passive training.

摘要

本文研发了一种由分布式主动半主动(DASA)系统驱动的缆索驱动三自由度(DOF)手腕康复外骨骼。与传统的缆索驱动机器人相比,该机器人通过增加旋转补偿机构和优化缆索附着点的分布,极大地扩大了工作空间。同时,提高了缆索张力的效率,并减小了寄生力(沿肢体作用在关节上的力)。此外,为了减少致动器与输出之间的柔性元件(如缆索或鲍登缆索)的影响,并提高力带宽,我们设计了由一个带齿轮的直流电机和四个磁流变(MR)离合器组成的DASA系统,该系统具有低输出惯性。提出了一种快速解缆策略以确保在异常情况下的安全。实现了一种被动训练算法和按需辅助(AAN)算法来控制外骨骼。对健康受试者和受损受试者都进行了多项实验,以测试所提出的康复系统的性能和有效性。结果表明,该系统能够满足康复训练对工作空间和力反馈的需求,并提供高效的主动和被动训练。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69ac/8060699/485f02c1e58f/fnbot-15-664062-g0001.jpg

相似文献

1
A Cable-Driven Three-DOF Wrist Rehabilitation Exoskeleton With Improved Performance.
Front Neurorobot. 2021 Apr 8;15:664062. doi: 10.3389/fnbot.2021.664062. eCollection 2021.
3
Learning-Based Repetitive Control of a Bowden-Cable-Actuated Exoskeleton with Frictional Hysteresis.
Micromachines (Basel). 2022 Oct 4;13(10):1674. doi: 10.3390/mi13101674.
4
Human movement training with a cable driven ARm EXoskeleton (CAREX).
IEEE Trans Neural Syst Rehabil Eng. 2015 Jan;23(1):84-92. doi: 10.1109/TNSRE.2014.2329018. Epub 2014 Jun 5.
5
Modeling and Control of a Cable-Driven Rotary Series Elastic Actuator for an Upper Limb Rehabilitation Robot.
Front Neurorobot. 2020 Feb 25;14:13. doi: 10.3389/fnbot.2020.00013. eCollection 2020.
9
Modeling and control of a bedside cable-driven lower-limb rehabilitation robot for bedridden individuals.
Front Bioeng Biotechnol. 2023 Nov 23;11:1321905. doi: 10.3389/fbioe.2023.1321905. eCollection 2023.
10
Development of an Active Cable-Driven, Force-Controlled Robotic System for Walking Rehabilitation.
Front Neurorobot. 2021 May 21;15:651177. doi: 10.3389/fnbot.2021.651177. eCollection 2021.

引用本文的文献

1
Design and analysis of exoskeleton devices for rehabilitation of distal radius fracture.
Front Neurorobot. 2024 Oct 18;18:1477232. doi: 10.3389/fnbot.2024.1477232. eCollection 2024.
2
Instilling the perception of weight in augmented reality using minimal haptic feedback.
Sci Rep. 2024 Oct 22;14(1):24894. doi: 10.1038/s41598-024-75596-7.
4
QPSO-MPC based tracking algorithm for cable-driven continuum robots.
Front Neurorobot. 2022 Oct 14;16:1014163. doi: 10.3389/fnbot.2022.1014163. eCollection 2022.

本文引用的文献

1
Comparative study of actuation systems for portable upper limb exoskeletons.
Med Eng Phys. 2018 Oct;60:1-13. doi: 10.1016/j.medengphy.2018.07.017. Epub 2018 Aug 17.
2
A musculoskeletal model to estimate the relative changes in wrist strength due to interacting wrist and forearm postures.
Comput Methods Biomech Biomed Engin. 2017 Oct;20(13):1403-1411. doi: 10.1080/10255842.2017.1366994. Epub 2017 Aug 24.
3
Design and characterization of the OpenWrist: A robotic wrist exoskeleton for coordinated hand-wrist rehabilitation.
IEEE Int Conf Rehabil Robot. 2017 Jul;2017:720-725. doi: 10.1109/ICORR.2017.8009333.
4
Mechanical design of EFW Exo II: A hybrid exoskeleton for elbow-forearm-wrist rehabilitation.
IEEE Int Conf Rehabil Robot. 2017 Jul;2017:689-694. doi: 10.1109/ICORR.2017.8009328.
6
Optimal Design of Cable-Driven Manipulators Using Particle Swarm Optimization.
J Mech Robot. 2016 Aug;8(4):0410031-410038. doi: 10.1115/1.4032103. Epub 2016 Mar 7.
7
Upper-Limb Robotic Exoskeletons for Neurorehabilitation: A Review on Control Strategies.
IEEE Rev Biomed Eng. 2016;9:4-14. doi: 10.1109/RBME.2016.2552201. Epub 2016 Apr 8.
9
System Characterization of MAHI EXO-II: A Robotic Exoskeleton for Upper Extremity Rehabilitation.
Proc ASME Dyn Syst Control Conf. 2014 Oct;2014. doi: 10.1115/DSCC2014-6267.
10
Human movement training with a cable driven ARm EXoskeleton (CAREX).
IEEE Trans Neural Syst Rehabil Eng. 2015 Jan;23(1):84-92. doi: 10.1109/TNSRE.2014.2329018. Epub 2014 Jun 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验