Suppr超能文献

一个用于电吉他演奏技巧识别的多模态数据集。

A multimodal dataset for electric guitar playing technique recognition.

作者信息

Mitsou Alexandros, Petrogianni Antonia, Vakalaki Eleni Amvrosia, Nikou Christos, Psallidas Theodoros, Giannakopoulos Theodoros

机构信息

Institute of Informatics and Telecommunications, NCSR 'Demokritos, 27, Neapoleos str &, Patriarchou Grigoriou E, Ag. Paraskevi 153 41, Athens, Greece.

出版信息

Data Brief. 2023 Nov 22;52:109842. doi: 10.1016/j.dib.2023.109842. eCollection 2024 Feb.

Abstract

Automatically detecting the playing styles of musical instruments could assist in the development of intelligent software for music coaching and training. However, the respective methodologies are still at an early stage, and there are limitations in the playing techniques that can be identified. This is partly due to the limited availability of complete and real-world datasets of instrument playing styles that are mandatory to develop and train robust machine learning models. To address this issue, in this data article, we introduce a multimodal dataset consisting of 549 video samples in MP4 format, and their respective audio samples in WAV format, covering nine different electric guitar techniques in total. These samples are produced by a recruited guitar player using a smartphone device. The recording setup is designed to closely resemble real-world situations, making the dataset valuable for developing intelligent software applications that can assess the playstyle of guitar players. Furthermore, to capture the diversities that may occur in a real scenario, different exercises are performed using each technique with three different electric guitars and three different simulation amplifiers using an amplifier simulation profiler. In addition to the audio and video samples, we also provide the musescores of the exercises, making the dataset extendable to more guitar players in the future. Finally, to demonstrate the effectiveness of our dataset in developing robust machine learning models, we design a Support Vector Machine (SVM) and a Convolutional Neural Network (CNN) for classifying the guitar techniques using the audio files of the dataset. The code for the experiments is publicly available in the dataset's repository.

摘要

自动检测乐器的演奏风格有助于音乐辅导和训练智能软件的开发。然而,相应的方法仍处于早期阶段,且在可识别的演奏技巧方面存在局限性。部分原因在于,开发和训练强大的机器学习模型所需的完整且真实的乐器演奏风格数据集有限。为解决这一问题,在本数据文章中,我们引入了一个多模态数据集,该数据集包含549个MP4格式的视频样本及其各自的WAV格式音频样本,总共涵盖九种不同的电吉他技巧。这些样本由一名招募的吉他手使用智能手机设备制作。录音设置旨在与真实场景紧密相似,这使得该数据集对于开发能够评估吉他手演奏风格的智能软件应用具有价值。此外,为捕捉真实场景中可能出现的多样性,针对每种技巧,使用三把不同的电吉他和通过放大器模拟剖析器使用三种不同的模拟放大器进行了不同的练习。除音频和视频样本外,我们还提供了练习的乐谱,使得该数据集未来可扩展至更多吉他手。最后,为证明我们的数据集在开发强大的机器学习模型方面的有效性,我们设计了一个支持向量机(SVM)和一个卷积神经网络(CNN),用于使用该数据集的音频文件对吉他技巧进行分类。实验代码在数据集的存储库中公开可用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b15/10698518/d70c6e1c665c/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验