Suppr超能文献

一种用于发现爵士吉他音乐中表现力演奏动作规则的机器学习方法。

A Machine Learning Approach to Discover Rules for Expressive Performance Actions in Jazz Guitar Music.

作者信息

Giraldo Sergio I, Ramirez Rafael

机构信息

Music Technology Group, Machine Learning and Music Lab, Department of Communication and Technology, Pompeu Fabra University Barcelona, Spain.

出版信息

Front Psychol. 2016 Dec 20;7:1965. doi: 10.3389/fpsyg.2016.01965. eCollection 2016.

Abstract

Expert musicians introduce expression in their performances by manipulating sound properties such as timing, energy, pitch, and timbre. Here, we present a data driven computational approach to induce expressive performance rule models for note duration, onset, energy, and ornamentation transformations in jazz guitar music. We extract high-level features from a set of 16 commercial audio recordings (and corresponding music scores) of jazz guitarist Grant Green in order to characterize the expression in the pieces. We apply machine learning techniques to the resulting features to learn expressive performance rule models. We (1) quantitatively evaluate the accuracy of the induced models, (2) analyse the relative importance of the considered musical features, (3) discuss some of the learnt expressive performance rules in the context of previous work, and (4) assess their generailty. The accuracies of the induced predictive models is significantly above base-line levels indicating that the audio performances and the musical features extracted contain sufficient information to automatically learn informative expressive performance patterns. Feature analysis shows that the most important musical features for predicting expressive transformations are note duration, pitch, metrical strength, phrase position, Narmour structure, and tempo and key of the piece. Similarities and differences between the induced expressive rules and the rules reported in the literature were found. Differences may be due to the fact that most previously studied performance data has consisted of classical music recordings. Finally, the rules' performer specificity/generality is assessed by applying the induced rules to performances of the same pieces performed by two other professional jazz guitar players. Results show a consistency in the ornamentation patterns between Grant Green and the other two musicians, which may be interpreted as a good indicator for generality of the ornamentation rules.

摘要

专业音乐家通过操控诸如节奏、力度、音高和音色等声音属性来在演奏中融入表现力。在此,我们提出一种数据驱动的计算方法,用于为爵士吉他音乐中的音符时长、起始、力度和装饰音变换归纳出富有表现力的演奏规则模型。我们从爵士吉他手格兰特·格林的16段商业音频录音(以及相应的乐谱)中提取高级特征,以便刻画这些曲目中的表现力。我们将机器学习技术应用于所得特征,以学习富有表现力的演奏规则模型。我们(1)定量评估归纳模型的准确性,(2)分析所考虑音乐特征的相对重要性,(3)在先前工作的背景下讨论一些学到的富有表现力的演奏规则,以及(4)评估它们的通用性。归纳出的预测模型的准确性显著高于基线水平,这表明音频演奏和所提取的音乐特征包含足够的信息来自动学习信息丰富的富有表现力的演奏模式。特征分析表明,用于预测富有表现力的变换的最重要音乐特征是音符时长、音高、节拍强度、乐句位置、装饰音结构以及乐曲的速度和调。我们发现了归纳出的富有表现力的规则与文献中报道的规则之间的异同。差异可能是由于此前大多数研究的演奏数据都由古典音乐录音组成这一事实。最后,通过将归纳出的规则应用于另外两位专业爵士吉他手演奏的同一曲目的表演来评估这些规则的演奏者特异性/通用性。结果表明,格兰特·格林与其他两位音乐家在装饰音模式上具有一致性,这可以被解释为装饰音规则通用性的一个良好指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55fe/5167744/d61eb3e2df55/fpsyg-07-01965-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验