Suppr超能文献

双 Transformer 超分辨率在乳腺癌 ADC 图像中的应用。

Double Transformer Super-Resolution for Breast Cancer ADC Images.

出版信息

IEEE J Biomed Health Inform. 2024 Feb;28(2):917-928. doi: 10.1109/JBHI.2023.3341250. Epub 2024 Feb 5.

Abstract

Diffusion-weighted imaging (DWI) has been extensively explored in guiding the clinic management of patients with breast cancer. However, due to the limited resolution, accurately characterizing tumors using DWI and the corresponding apparent diffusion coefficient (ADC) is still a challenging problem. In this paper, we aim to address the issue of super-resolution (SR) of ADC images and evaluate the clinical utility of SR-ADC images through radiomics analysis. To this end, we propose a novel double transformer-based network (DTformer) to enhance the resolution of ADC images. More specifically, we propose a symmetric U-shaped encoder-decoder network with two different types of transformer blocks, named as UTNet, to extract deep features for super-resolution. The basic backbone of UTNet is composed of a locally-enhanced Swin transformer block (LeSwin-T) and a convolutional transformer block (Conv-T), which are responsible for capturing long-range dependencies and local spatial information, respectively. Additionally, we introduce a residual upsampling network (RUpNet) to expand image resolution by leveraging initial residual information from the original low-resolution (LR) images. Extensive experiments show that DTformer achieves superior SR performance. Moreover, radiomics analysis reveals that improving the resolution of ADC images is beneficial for tumor characteristic prediction, such as histological grade and human epidermal growth factor receptor 2 (HER2) status.

摘要

扩散加权成像(DWI)已被广泛探索用于指导乳腺癌患者的临床管理。然而,由于分辨率有限,使用 DWI 准确地描述肿瘤及其对应的表观扩散系数(ADC)仍然是一个具有挑战性的问题。在本文中,我们旨在解决 ADC 图像的超分辨率(SR)问题,并通过放射组学分析评估 SR-ADC 图像的临床效用。为此,我们提出了一种基于双变换的新型网络(DTformer),以提高 ADC 图像的分辨率。具体来说,我们提出了一种具有两种不同类型的变换块的对称 U 形编码器-解码器网络,称为 UTNet,用于进行超分辨率的深度特征提取。UTNet 的基本骨干由一个局部增强的 Swin 变换块(LeSwin-T)和一个卷积变换块(Conv-T)组成,分别负责捕获长程依赖关系和局部空间信息。此外,我们引入了一个残差上采样网络(RUpNet),通过利用原始低分辨率(LR)图像中的初始残差信息来扩展图像分辨率。广泛的实验表明,DTformer 实现了卓越的 SR 性能。此外,放射组学分析表明,提高 ADC 图像的分辨率有助于肿瘤特征的预测,如组织学分级和人表皮生长因子受体 2(HER2)状态。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验