基于生成对抗网络的扩散加权成像超分辨率:在乳腺癌肿瘤放射组学中的应用。
Generative adversarial network-based super-resolution of diffusion-weighted imaging: Application to tumour radiomics in breast cancer.
机构信息
Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, China.
Department of Radiology, First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang, Hangzhou, China.
出版信息
NMR Biomed. 2020 Aug;33(8):e4345. doi: 10.1002/nbm.4345. Epub 2020 Jun 10.
Diffusion-weighted imaging (DWI) is increasingly used to guide the clinical management of patients with breast tumours. However, accurate tumour characterization with DWI and the corresponding apparent diffusion coefficient (ADC) maps are challenging due to their limited resolution. This study aimed to produce super-resolution (SR) ADC images and to assess the clinical utility of these SR images by performing a radiomic analysis for predicting the histologic grade and Ki-67 expression status of breast cancer. To this end, 322 samples of dynamic enhanced magnetic resonance imaging (DCE-MRI) and the corresponding DWI data were collected. A SR generative adversarial (SRGAN) and an enhanced deep SR (EDSR) network along with the bicubic interpolation were utilized to generate SR-ADC images from which radiomic features were extracted. The dataset was randomly separated into a development dataset (n = 222) to establish a deep SR model using DCE-MRI and a validation dataset (n = 100) to improve the resolution of ADC images. This random separation of datasets was performed 10 times, and the results were averaged. The EDSR method was significantly better than the SRGAN and bicubic methods in terms of objective quality criteria. Univariate and multivariate predictive models of radiomic features were established to determine the area under the receiver operating characteristic curve (AUC). Individual features from the tumour SR-ADC images showed a higher performance with the EDSR and SRGAN methods than with the bicubic method and the original images. Multivariate analysis of the collective radiomics showed that the EDSR- and SRGAN-based SR-ADC images performed better than the bicubic method and original images in predicting either Ki-67 expression levels (AUCs of 0.818 and 0.801, respectively) or the tumour grade (AUCs of 0.826 and 0.828, respectively). This work demonstrates that in addition to improving the resolution of ADC images, deep SR networks can also improve tumour image-based diagnosis in breast cancer.
扩散加权成像(DWI)越来越多地用于指导乳腺肿瘤患者的临床管理。然而,由于其分辨率有限,DWI 及相应的表观扩散系数(ADC)图对肿瘤的准确特征描述具有挑战性。本研究旨在生成超分辨率(SR)ADC 图像,并通过对乳腺肿瘤的组织学分级和 Ki-67 表达状态进行放射组学分析来评估这些 SR 图像的临床应用价值。为此,收集了 322 例动态对比增强磁共振成像(DCE-MRI)和相应的 DWI 数据。使用 SR 生成对抗网络(SRGAN)和增强型深度 SR(EDSR)网络以及双线性插值从 DCE-MRI 生成 SR-ADC 图像,并从中提取放射组学特征。数据集随机分为开发数据集(n=222),用于使用 DCE-MRI 建立深度 SR 模型,验证数据集(n=100)用于提高 ADC 图像的分辨率。数据集的这种随机划分进行了 10 次,结果取平均值。在客观质量标准方面,EDSR 方法明显优于 SRGAN 和双线性方法。建立了基于放射组学特征的单变量和多变量预测模型,以确定受试者工作特征曲线(ROC)下的面积(AUC)。与双线性方法和原始图像相比,来自肿瘤 SR-ADC 图像的个体特征,在使用 EDSR 和 SRGAN 方法时,表现出更高的性能。对集体放射组学的多元分析表明,与双线性方法和原始图像相比,基于 EDSR 和 SRGAN 的 SR-ADC 图像在预测 Ki-67 表达水平(AUC 分别为 0.818 和 0.801)或肿瘤分级(AUC 分别为 0.826 和 0.828)方面表现更好。这项工作表明,除了提高 ADC 图像的分辨率外,深度 SR 网络还可以提高乳腺癌的肿瘤图像诊断。