文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

微生物诱导的甲烷氧化菌协同沉淀二氧化硅及其对微生物化石保存的意义。

Microbially induced precipitation of silica by anaerobic methane-oxidizing consortia and implications for microbial fossil preservation.

机构信息

Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125.

Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan.

出版信息

Proc Natl Acad Sci U S A. 2023 Dec 19;120(51):e2302156120. doi: 10.1073/pnas.2302156120. Epub 2023 Dec 11.


DOI:10.1073/pnas.2302156120
PMID:38079551
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10743459/
Abstract

Authigenic carbonate minerals can preserve biosignatures of microbial anaerobic oxidation of methane (AOM) in the rock record. It is not currently known whether the microorganisms that mediate sulfate-coupled AOM-often occurring as multicelled consortia of anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB)-are preserved as microfossils. Electron microscopy of ANME-SRB consortia in methane seep sediments has shown that these microorganisms can be associated with silicate minerals such as clays [Chen ., , 1-9 (2014)], but the biogenicity of these phases, their geochemical composition, and their potential preservation in the rock record is poorly constrained. Long-term laboratory AOM enrichment cultures in sediment-free artificial seawater [Yu ., , e02109-21 (2022)] resulted in precipitation of amorphous silicate particles (~200 nm) within clusters of exopolymer-rich AOM consortia from media undersaturated with respect to silica, suggestive of a microbially mediated process. The use of techniques like correlative fluorescence in situ hybridization (FISH), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS), and nanoscale secondary ion mass spectrometry (nanoSIMS) on AOM consortia from methane seep authigenic carbonates and sediments further revealed that they are enveloped in a silica-rich phase similar to the mineral phase on ANME-SRB consortia in enrichment cultures. Like in cyanobacteria [Moore ., , 862-866 (2020)], the Si-rich phases on ANME-SRB consortia identified here may enhance their preservation as microfossils. The morphology of these silica-rich precipitates, consistent with amorphous-type clay-like spheroids formed within organic assemblages, provides an additional mineralogical signature that may assist in the search for structural remnants of microbial consortia in rocks which formed in methane-rich environments from Earth and other planetary bodies.

摘要

自生碳酸盐矿物可以在岩石记录中保存微生物厌氧甲烷氧化 (AOM) 的生物特征。目前尚不清楚介导硫酸盐耦合 AOM 的微生物(通常是厌氧甲烷营养古菌 (ANME) 和硫酸盐还原菌 (SRB) 的多细胞共生体)是否作为微生物化石保存下来。甲烷渗漏沉积物中 ANME-SRB 共生体的电子显微镜研究表明,这些微生物可以与硅酸盐矿物(如粘土)有关[Chen.,, 1-9 (2014)],但这些相的生物成因、地球化学组成及其在岩石记录中的潜在保存情况受到限制。在无沉积物的人工海水中进行的长期实验室 AOM 富集培养[Yu., , e02109-21 (2022)]导致在相对于硅不饱和的培养基中,富含外聚合物的 AOM 共生体簇内沉淀出无定形硅酸盐颗粒(~200nm),表明这是一种微生物介导的过程。在甲烷渗漏自生碳酸盐和沉积物中的 AOM 共生体上使用相关荧光原位杂交 (FISH)、带有能量色散 X 射线光谱 (SEM-EDS) 的扫描电子显微镜和纳米二次离子质谱 (nanoSIMS) 等技术进一步表明,它们被包裹在类似于富硅相的物质中在富集培养中的 ANME-SRB 共生体中发现的矿物相。与蓝细菌[Moore., , 862-866 (2020)]一样,这里鉴定的富含 Si 的相可能增强了它们作为微生物化石的保存能力。这些富含硅的沉淀物的形态与在有机组合中形成的无定形型粘土状球体一致,为可能有助于在富含甲烷的环境中形成的岩石中寻找微生物共生体结构残余物提供了另一个矿物学特征从地球和其他行星体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f7e/10743459/b1b2668f0807/pnas.2302156120fig05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f7e/10743459/ac6768578924/pnas.2302156120fig01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f7e/10743459/dff49461e756/pnas.2302156120fig02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f7e/10743459/558de9cfc5ee/pnas.2302156120fig03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f7e/10743459/fb8d268b1b4e/pnas.2302156120fig04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f7e/10743459/b1b2668f0807/pnas.2302156120fig05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f7e/10743459/ac6768578924/pnas.2302156120fig01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f7e/10743459/dff49461e756/pnas.2302156120fig02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f7e/10743459/558de9cfc5ee/pnas.2302156120fig03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f7e/10743459/fb8d268b1b4e/pnas.2302156120fig04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f7e/10743459/b1b2668f0807/pnas.2302156120fig05.jpg

相似文献

[1]
Microbially induced precipitation of silica by anaerobic methane-oxidizing consortia and implications for microbial fossil preservation.

Proc Natl Acad Sci U S A. 2023-12-19

[2]
Community Structure and Microbial Associations in Sediment-Free Methanotrophic Enrichment Cultures from a Marine Methane Seep.

Appl Environ Microbiol. 2022-6-14

[3]
Experimentally-validated correlation analysis reveals new anaerobic methane oxidation partnerships with consortium-level heterogeneity in diazotrophy.

ISME J. 2021-2

[4]
Subgroup Characteristics of Marine Methane-Oxidizing ANME-2 Archaea and Their Syntrophic Partners as Revealed by Integrated Multimodal Analytical Microscopy.

Appl Environ Microbiol. 2018-5-17

[5]
Identification of the dominant sulfate-reducing bacterial partner of anaerobic methanotrophs of the ANME-2 clade.

Environ Microbiol. 2010-7-9

[6]
Spatial-Temporal Pattern of Sulfate-Dependent Anaerobic Methane Oxidation in an Intertidal Zone of the East China Sea.

Appl Environ Microbiol. 2019-3-22

[7]
Nitrate-based niche differentiation by distinct sulfate-reducing bacteria involved in the anaerobic oxidation of methane.

ISME J. 2013-9-5

[8]
Gene expression and ultrastructure of meso- and thermophilic methanotrophic consortia.

Environ Microbiol. 2018-4-11

[9]
Biomineralization mediated by anaerobic methane-consuming cell consortia.

Sci Rep. 2014-7-16

[10]
Thermophilic anaerobic oxidation of methane by marine microbial consortia.

ISME J. 2011-6-23

引用本文的文献

[1]
Deep-sea microbially influenced corrosion and biomineralization.

Front Microbiol. 2025-7-17

本文引用的文献

[1]
Anaerobic Degradation of Alkanes by Marine Archaea.

Annu Rev Microbiol. 2022-9-8

[2]
Community Structure and Microbial Associations in Sediment-Free Methanotrophic Enrichment Cultures from a Marine Methane Seep.

Appl Environ Microbiol. 2022-6-14

[3]
Secondary mineral formation associated with respiration of nontronite, NAu-1 by iron reducing bacteria.

Geochem Trans. 2005-10-24

[4]
Comparative genomics reveals electron transfer and syntrophic mechanisms differentiating methanotrophic and methanogenic archaea.

PLoS Biol. 2022-1-5

[5]
Carbonate-hosted microbial communities are prolific and pervasive methane oxidizers at geologically diverse marine methane seep sites.

Proc Natl Acad Sci U S A. 2021-6-22

[6]
A new model for silicification of cyanobacteria in Proterozoic tidal flats.

Geobiology. 2021-9

[7]
Tailoring of silica-based nanoporous pod by spermidine multi-activity.

Sci Rep. 2020-12-3

[8]
Measurement and visualization of cell membrane surface charge in fixed cultured cells related with cell morphology.

PLoS One. 2020-7-23

[9]
Microbial interactions in the anaerobic oxidation of methane: model simulations constrained by process rates and activity patterns.

Environ Microbiol. 2019-1-22

[10]
Subgroup Characteristics of Marine Methane-Oxidizing ANME-2 Archaea and Their Syntrophic Partners as Revealed by Integrated Multimodal Analytical Microscopy.

Appl Environ Microbiol. 2018-5-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索