Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125.
Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan.
Proc Natl Acad Sci U S A. 2023 Dec 19;120(51):e2302156120. doi: 10.1073/pnas.2302156120. Epub 2023 Dec 11.
Authigenic carbonate minerals can preserve biosignatures of microbial anaerobic oxidation of methane (AOM) in the rock record. It is not currently known whether the microorganisms that mediate sulfate-coupled AOM-often occurring as multicelled consortia of anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB)-are preserved as microfossils. Electron microscopy of ANME-SRB consortia in methane seep sediments has shown that these microorganisms can be associated with silicate minerals such as clays [Chen ., , 1-9 (2014)], but the biogenicity of these phases, their geochemical composition, and their potential preservation in the rock record is poorly constrained. Long-term laboratory AOM enrichment cultures in sediment-free artificial seawater [Yu ., , e02109-21 (2022)] resulted in precipitation of amorphous silicate particles (~200 nm) within clusters of exopolymer-rich AOM consortia from media undersaturated with respect to silica, suggestive of a microbially mediated process. The use of techniques like correlative fluorescence in situ hybridization (FISH), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS), and nanoscale secondary ion mass spectrometry (nanoSIMS) on AOM consortia from methane seep authigenic carbonates and sediments further revealed that they are enveloped in a silica-rich phase similar to the mineral phase on ANME-SRB consortia in enrichment cultures. Like in cyanobacteria [Moore ., , 862-866 (2020)], the Si-rich phases on ANME-SRB consortia identified here may enhance their preservation as microfossils. The morphology of these silica-rich precipitates, consistent with amorphous-type clay-like spheroids formed within organic assemblages, provides an additional mineralogical signature that may assist in the search for structural remnants of microbial consortia in rocks which formed in methane-rich environments from Earth and other planetary bodies.
自生碳酸盐矿物可以在岩石记录中保存微生物厌氧甲烷氧化 (AOM) 的生物特征。目前尚不清楚介导硫酸盐耦合 AOM 的微生物(通常是厌氧甲烷营养古菌 (ANME) 和硫酸盐还原菌 (SRB) 的多细胞共生体)是否作为微生物化石保存下来。甲烷渗漏沉积物中 ANME-SRB 共生体的电子显微镜研究表明,这些微生物可以与硅酸盐矿物(如粘土)有关[Chen.,, 1-9 (2014)],但这些相的生物成因、地球化学组成及其在岩石记录中的潜在保存情况受到限制。在无沉积物的人工海水中进行的长期实验室 AOM 富集培养[Yu., , e02109-21 (2022)]导致在相对于硅不饱和的培养基中,富含外聚合物的 AOM 共生体簇内沉淀出无定形硅酸盐颗粒(~200nm),表明这是一种微生物介导的过程。在甲烷渗漏自生碳酸盐和沉积物中的 AOM 共生体上使用相关荧光原位杂交 (FISH)、带有能量色散 X 射线光谱 (SEM-EDS) 的扫描电子显微镜和纳米二次离子质谱 (nanoSIMS) 等技术进一步表明,它们被包裹在类似于富硅相的物质中在富集培养中的 ANME-SRB 共生体中发现的矿物相。与蓝细菌[Moore., , 862-866 (2020)]一样,这里鉴定的富含 Si 的相可能增强了它们作为微生物化石的保存能力。这些富含硅的沉淀物的形态与在有机组合中形成的无定形型粘土状球体一致,为可能有助于在富含甲烷的环境中形成的岩石中寻找微生物共生体结构残余物提供了另一个矿物学特征从地球和其他行星体。
Proc Natl Acad Sci U S A. 2023-12-19
Appl Environ Microbiol. 2022-6-14
Appl Environ Microbiol. 2019-3-22
Environ Microbiol. 2018-4-11
Front Microbiol. 2025-7-17
Annu Rev Microbiol. 2022-9-8
Appl Environ Microbiol. 2022-6-14
Proc Natl Acad Sci U S A. 2021-6-22
Sci Rep. 2020-12-3