Suppr超能文献

海洋甲烷渗漏沉积物免培养甲烷氧化菌富集培养物中的群落结构与微生物关联。

Community Structure and Microbial Associations in Sediment-Free Methanotrophic Enrichment Cultures from a Marine Methane Seep.

机构信息

Division of Geological and Planetary Sciences, California Institute of Technologygrid.20861.3d, Pasadena, California, USA.

Division of Biology and Biological Engineering, California Institute of Technologygrid.20861.3d, Pasadena, California, USA.

出版信息

Appl Environ Microbiol. 2022 Jun 14;88(11):e0210921. doi: 10.1128/aem.02109-21. Epub 2022 May 23.

Abstract

Syntrophic consortia of anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB) consume large amounts of methane and serve as the foundational microorganisms in marine methane seeps. Despite their importance in the carbon cycle, research on the physiology of ANME-SRB consortia has been hampered by the slow growth and complex physicochemical environment the consortia inhabit. Here, we report successful sediment-free enrichment of ANME-SRB consortia from deep-sea methane seep sediments in the Santa Monica Basin, California. Anoxic Percoll density gradients and size-selective filtration were used to separate ANME-SRB consortia from sediment particles and single cells to accelerate the cultivation process. Over a 3-year period, a subset of the sediment-associated ANME and SRB lineages, predominantly comprised of ANME-2a/2b (" Methanocomedenaceae") and their syntrophic bacterial partners, SEEP-SRB1/2, adapted and grew under defined laboratory conditions. Metagenome-assembled genomes from several enrichments revealed that ANME-2a, SEEP-SRB1, and in different enrichments from the same inoculum represented distinct species, whereas other coenriched microorganisms were closely related at the species level. This suggests that ANME, SRB, and are more genetically diverse than other members in methane seeps. Flow cytometry sorting and sequencing of cell aggregates revealed that , , and SEEP-SRB1 were overrepresented in multiple ANME-2a cell aggregates relative to the bulk metagenomes, suggesting they were physically associated and possibly interacting. Overall, this study represents a successful case of selective cultivation of anaerobic slow-growing microorganisms from sediments based on their physical characteristics, introducing new opportunities for detailed genomic, physiological, biochemical, and ecological analyses. Biological anaerobic oxidation of methane (AOM) coupled with sulfate reduction represents a large methane sink in global ocean sediments. Methane consumption is carried out by syntrophic archaeal-bacterial consortia and fuels a unique ecosystem, yet the interactions in these slow-growing syntrophic consortia and with other associated community members remain poorly understood. The significance of this study is the establishment of sediment-free enrichment cultures of anaerobic methanotrophic archaea and sulfate-reducing bacteria performing AOM with sulfate using selective cultivation approaches based on size, density, and metabolism. By reconstructing microbial genomes and analyzing community composition of the enrichment cultures and cell aggregates, we shed light on the diversity of microorganisms physically associated with AOM consortia beyond the core syntrophic partners. These enrichment cultures offer simplified model systems to extend our understanding of the diversity of microbial interactions within marine methane seeps.

摘要

厌氧甲烷氧化古菌(ANME)和硫酸盐还原菌(SRB)的共生体消耗大量甲烷,是海洋甲烷渗漏中的基础微生物。尽管它们在碳循环中具有重要意义,但由于共生体所处的生长缓慢且复杂的物理化学环境,对 ANME-SRB 共生体的生理学研究一直受到阻碍。在这里,我们报告了从加利福尼亚州圣莫尼卡盆地深海甲烷渗漏沉积物中成功富集无沉积物的 ANME-SRB 共生体。使用无氧气的 Percoll 密度梯度和尺寸选择过滤将 ANME-SRB 共生体从沉积物颗粒和单细胞中分离出来,以加速培养过程。在 3 年的时间里,从同一接种物中分离出的一部分与沉积物相关的 ANME 和 SRB 谱系,主要由 ANME-2a/2b(“ Methanocomedenaceae”)及其共生细菌伙伴 SEEP-SRB1/2 组成,适应并在定义明确的实验室条件下生长。来自多个富集物的宏基因组组装基因组表明,ANME-2a、SEEP-SRB1 和 在同一接种物的不同富集物中代表不同的物种,而其他共富集的微生物在物种水平上密切相关。这表明 ANME、SRB 和 比甲烷渗漏中的其他成员具有更高的遗传多样性。流式细胞术分选和细胞聚集体测序表明,与整个宏基因组相比, 在多个 ANME-2a 细胞聚集体中过度表达,表明它们在物理上存在关联并且可能相互作用。总体而言,这项研究代表了根据物理特性从沉积物中选择性培养厌氧生长缓慢的微生物的成功案例,为详细的基因组、生理、生化和生态分析提供了新的机会。 生物厌氧氧化甲烷(AOM)与硫酸盐还原相结合是全球海洋沉积物中一个很大的甲烷汇。甲烷的消耗是由共生的古细菌和细菌完成的,并为一个独特的生态系统提供燃料,但这些生长缓慢的共生体中的相互作用以及与其他相关群落成员的相互作用仍知之甚少。这项研究的意义在于,建立了基于大小、密度和代谢的选择性培养方法,从沉积物中无沉积物的富集培养厌氧甲烷氧化古菌和硫酸盐还原细菌进行 AOM 与硫酸盐的反应。通过重建微生物基因组并分析富集培养物和细胞聚集体的群落组成,我们揭示了与 AOM 共生体物理相关的微生物多样性,超出了核心共生伙伴。这些富集培养物提供了简化的模型系统,以扩展我们对海洋甲烷渗漏中微生物相互作用多样性的理解。

相似文献

引用本文的文献

8
Archaea and their interactions with bacteria in a karst ecosystem.古生菌及其在喀斯特生态系统中与细菌的相互作用。
Front Microbiol. 2023 Feb 6;14:1068595. doi: 10.3389/fmicb.2023.1068595. eCollection 2023.

本文引用的文献

5
Putative Extracellular Electron Transfer in Methanogenic Archaea.产甲烷古菌中假定的细胞外电子传递
Front Microbiol. 2021 Mar 22;12:611739. doi: 10.3389/fmicb.2021.611739. eCollection 2021.
9
Bacterial chemolithoautotrophy via manganese oxidation.通过锰氧化实现的细菌化能无机自养
Nature. 2020 Jul;583(7816):453-458. doi: 10.1038/s41586-020-2468-5. Epub 2020 Jul 15.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验