Suppr超能文献

电阻抗断层成像中神经网络训练数据的形状分析

Shape analysis of training data for neural networks in Electrical Impedance Tomography.

作者信息

Rixen Joran, Eliasson Benedikt, Lyra Simon, Leonhardt Steffen

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul;2023:1-4. doi: 10.1109/EMBC40787.2023.10340254.

Abstract

Electrical Impedance Tomography (EIT) is a cost-effective and fast way to visualize dielectric properties of the human body, through the injection of alternating currents and measurement of the resulting potential on the bodies surface. However, this comes at the cost of low resolution as EIT is a non-linear ill-posed inverse problem. Recently Deep Learning methods have gained the interest in this field, as they provide a way to mimic non-linear functions. Most of the approaches focus on the structure of the Artificial Neural Networks (ANNs), while only glancing over the used training data. However, the structure of the training data is of great importance, as it needs to be simulated. In this work, we analyze the effect of basic shapes to be included as targets in the training data set. We compared inclusions of ellipsoids, cubes and octahedra as training data for ANNs in terms of reconstruction quality. For that, we used the well-established GREIT figures of merit on laboratory tank measurements. We found that ellipsoids resulted in the best reconstruction quality of EIT images. This shows that the choice of simulation data has an impact on the ANN reconstruction quality.Clinical relevance- This work helps to improve time independent EIT reconstruction, which in turn allows for extraction of time independent features of e.g., the lung.

摘要

电阻抗断层成像(EIT)是一种经济高效且快速的方法,通过注入交流电并测量人体表面产生的电位来可视化人体的介电特性。然而,这是以低分辨率为代价的,因为EIT是一个非线性不适定逆问题。最近,深度学习方法在该领域引起了关注,因为它们提供了一种模拟非线性函数的方法。大多数方法都集中在人工神经网络(ANN)的结构上,而只是略微关注所使用的训练数据。然而,训练数据的结构非常重要,因为它需要被模拟。在这项工作中,我们分析了作为训练数据集目标包含的基本形状的影响。我们比较了将椭球体、立方体和八面体作为人工神经网络训练数据时在重建质量方面的情况。为此,我们在实验室水槽测量中使用了成熟的GREIT品质因数。我们发现椭球体导致EIT图像的重建质量最佳。这表明模拟数据的选择对人工神经网络的重建质量有影响。临床相关性——这项工作有助于改进与时间无关的EIT重建,进而允许提取例如肺部的与时间无关的特征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验