Riley Morgan, Tala Fnu, Bandali Mehdi, Johnson Benjamin C
Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul;2023:1-4. doi: 10.1109/EMBC40787.2023.10340538.
Deeply implanted bioelectronic devices that selectively record and stimulate peripheral nerves have the potential to revolutionize healthcare by delivering on-demand, personalized therapy. A key barrier to this goal is the lack of a miniaturized, robust, and energy-efficient wireless link capable of transmitting data from multiple sensing channels. To address this issue, we present a wireless galvanic impulse link that uses two 500μm diameter planar electrodes on the outside of a nerve cuff to transmit data to a wearable receiver on the skin's surface at rates greater than 1Mbps. To achieve an energy-efficient, high data rate link, our protocol encodes information in the timing of narrow biphasic pulses that is reconstructed by the wearable receiver. We use a combination of modeling and in vivo and in vitro experimentation to demonstrate the viability of the link. We demonstrate losses lower than 60dB even with significant, 50mm lateral misalignment, ensuring a sufficient signal-to-noise ratio for robust operation. Using a custom, flexible nerve cuff, we demonstrate data transmission in a 14mm-thick rodent animal model and in a 42mm-thick heterogeneous human tissue phantom.
深度植入的生物电子设备能够选择性地记录和刺激周围神经,通过提供按需定制的个性化治疗,有望彻底改变医疗保健行业。实现这一目标的一个关键障碍是缺乏一种小型化、坚固且节能的无线链路,该链路能够从多个传感通道传输数据。为了解决这个问题,我们提出了一种无线电流脉冲链路,它在神经袖套外部使用两个直径为500μm的平面电极,以大于1Mbps的速率将数据传输到皮肤表面的可穿戴接收器。为了实现节能、高数据速率的链路,我们的协议在窄双相脉冲的定时中对信息进行编码,可穿戴接收器对其进行重构。我们结合建模以及体内和体外实验来证明该链路的可行性。即使存在50mm的严重横向错位,我们也证明了损耗低于60dB,确保了足够的信噪比以实现稳定运行。使用定制的柔性神经袖套,我们在14mm厚的啮齿动物模型和42mm厚的异质人体组织模型中演示了数据传输。