Department of Environmental and Chemical Engineering, Shanghai University, Nanchen Rd. 333, Shanghai, China.
School of Medicine, Shanghai University, Nanchen Rd. 333, Shanghai, China.
Angew Chem Int Ed Engl. 2024 Jan 15;63(3):e202315251. doi: 10.1002/anie.202315251. Epub 2023 Dec 12.
Microbial biosynthesis, as an alternative method for producing quantum dots (QDs), has gained attention because it can be conducted under mild and environmentally friendly conditions, distinguishing it from conventional chemical and physical synthesis approaches. However, there is currently no method to selectively control this biosynthesis process in a subset of microbes within a population using external stimuli. In this study, we have attained precise and selective control over the microbial biosynthesis of QDs through the utilization of an optogenetically engineered Escherichia coli (E. coli). The recombinant E. coli is designed to express smCSE enzyme, under the regulation of eLightOn system, which can be activated by blue light. The smCSE enzymes use L-cysteine and Cd as substrates to form CdS QDs. This system enables light-inducible bacterial biosynthesis of QDs in precise patterns within a hydrogel for information encryption. As the biosynthesis progresses, the optical characteristics of the QDs change, allowing living materials containing the recombinant E. coli to display time-dependent patterns that self-destruct after reading. Compared to static encryption using fluorescent QD inks, dynamic information encryption based on living materials offers enhanced security.
微生物生物合成作为一种生产量子点 (QD) 的替代方法,因其可以在温和且环保的条件下进行,与传统的化学和物理合成方法区分开来,而受到关注。然而,目前还没有一种方法可以使用外部刺激在种群中的一部分微生物中选择性地控制这种生物合成过程。在这项研究中,我们通过利用光遗传学工程化的大肠杆菌 (E. coli) 实现了对 QD 微生物生物合成的精确和选择性控制。该重组大肠杆菌被设计为在 eLightOn 系统的调控下表达 smCSE 酶,该系统可以被蓝光激活。smCSE 酶利用 L-半胱氨酸和 Cd 作为底物形成 CdS QD。该系统可以在水凝胶中以精确的图案诱导光控细菌合成 QD,用于信息加密。随着生物合成的进行,QD 的光学特性发生变化,使得含有重组大肠杆菌的活体材料可以显示出时间依赖性图案,在读取后自行破坏。与使用荧光 QD 墨水的静态加密相比,基于活体材料的动态信息加密提供了更高的安全性。