Tseng Yu-Hsuan, Liao Chih-Wei, Lin Yu-Liang, Fan Yi-Chun, Chang Chia-Wei, Chang Chun-Ting, Chen Jiun-Tai
Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 300093.
Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 300093.
ACS Appl Mater Interfaces. 2024 Jan 17;16(2):2716-2725. doi: 10.1021/acsami.3c14669. Epub 2023 Dec 12.
Block copolymer composite electrolytes have gained extensive attention for their promising performance in ionic conductivity and mechanical properties, making them valuable for future technologies. The control of the ionic conductivity through the self-assembly of block copolymers, however, remains a great challenge, especially in confined environments. In this study, we prepare block copolymer composite electrolytes using polystyrene--poly(ethylene oxide) (PS--PEO, SEO) as the polymer matrix and anodic aluminum oxide (AAO) templates as the ceramic skeleton. The self-assembly of SEO creates nanoscale ion transport pathways in the PEO regions through ionic interactions with lithium salts. The nanopores of the AAO templates provide a confined environment for complex phase separation of SEO controlled by selective solvent vapor annealing. Our findings demonstrate that transforming self-assembled SEO structures allows for precise control of ion transport pathways with cylindrical structures exhibiting 20 times higher ionic conductivities than those of helical structures. For AAO templates with pore diameters of 20 nm (SEO-LiTFSI@AAO-20), the ionic conductivities are approximately 410 times higher than those with pore diameters of 200 nm (SEO-LiTFSI@AAO-200), owing to the larger specific surface areas within the smaller nanopores. Utilizing the self-assembly of SEO not only enables the construction of vertically aligned ion transport channels on various scales but also offers a fascinating approach to tailor the conductive capabilities of composite electrolytes, enhancing the ion transport efficiency and allowing for the flexible design of block copolymer composite electrolytes.
嵌段共聚物复合电解质因其在离子电导率和机械性能方面的优异表现而受到广泛关注,这使其在未来技术中具有重要价值。然而,通过嵌段共聚物的自组装来控制离子电导率仍然是一个巨大的挑战,尤其是在受限环境中。在本研究中,我们以聚苯乙烯-聚环氧乙烷(PS-PEO,SEO)为聚合物基体,以阳极氧化铝(AAO)模板为陶瓷骨架制备了嵌段共聚物复合电解质。SEO的自组装通过与锂盐的离子相互作用在PEO区域内创建了纳米级离子传输通道。AAO模板的纳米孔为通过选择性溶剂蒸汽退火控制的SEO复杂相分离提供了受限环境。我们的研究结果表明,转变自组装的SEO结构能够精确控制离子传输通道,其中圆柱形结构的离子电导率比螺旋形结构高20倍。对于孔径为20nm的AAO模板(SEO-LiTFSI@AAO-20),其离子电导率比孔径为200nm的模板(SEO-LiTFSI@AAO-200)高约410倍,这是由于较小纳米孔内具有更大比表面积。利用SEO的自组装不仅能够构建各种尺度上垂直排列的离子传输通道,还为定制复合电解质的导电能力提供了一种引人入胜的方法,提高了离子传输效率,并允许对嵌段共聚物复合电解质进行灵活设计。