Suppr超能文献

嵌段共聚物电解质的本征离子传输特性

Intrinsic Ion Transport Properties of Block Copolymer Electrolytes.

作者信息

Sharon Daniel, Bennington Peter, Dolejsi Moshe, Webb Michael A, Dong Ban Xuan, de Pablo Juan J, Nealey Paul F, Patel Shrayesh N

机构信息

Pritzker School of Molecular Engineering, University of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637, United States.

Center for Molecular Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States.

出版信息

ACS Nano. 2020 Jul 28;14(7):8902-8914. doi: 10.1021/acsnano.0c03713. Epub 2020 Jun 16.

Abstract

Knowledge of intrinsic properties is of central importance for materials design and assessing suitability for specific applications. Self-assembling block copolymer electrolytes (BCEs) are of great interest for applications in solid-state energy storage devices. A fundamental understanding of ion transport properties, however, is hindered by the difficulty in deconvoluting extrinsic factors, such as defects, from intrinsic factors, such as the presence of interfaces between the domains. Here, we quantify the intrinsic ion transport properties of a model BCE system consisting of poly(styrene--ethylene oxide) (SEO) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt using a generalizable strategy of depositing thin films on interdigitated electrodes and self-assembling fully connected parallel lamellar structures throughout the films. Comparison between conductivity in homopolymer poly(ethylene oxide) (PEO)-LiTFSI electrolytes and the analogous conducting material in SEO over a range of salt concentrations (, molar ratio of lithium ion to ethylene oxide repeat units) and temperatures reveals that between 20% and 50% of the PEO in SEO is inactive. Using mean-field theory calculations of the domain structure and monomer concentration profiles at domain interfaces-both of which vary substantially with salt concentration-the fraction of inactive PEO in the SEO, as derived from conductivity measurements, can be quantitatively reconciled with the fraction of PEO that is mixed with greater than a few volume percent of polystyrene. Despite the detrimental interfacial effects for ion transport in BCEs, the intrinsic conductivity of the SEO studied here (. 10 S/cm at 90 °C, = 0.085) is an order of magnitude higher than reported values from bulk samples of similar molecular weight SEO (. 10 S/cm at 90 °C, = 0.085). Overall, this work provides motivation and methods for pursuing improved BCE chemical design, interfacial engineering, and processing.

摘要

了解材料的本征性质对于材料设计和评估其在特定应用中的适用性至关重要。自组装嵌段共聚物电解质(BCEs)在固态储能装置中的应用备受关注。然而,由于难以将诸如缺陷等外在因素与诸如畴间界面存在等内在因素区分开来,对离子传输性质的基本理解受到了阻碍。在此,我们使用一种可推广的策略,即在叉指电极上沉积薄膜并在整个薄膜中自组装完全连接的平行层状结构,来量化由聚(苯乙烯 - 环氧乙烷)(SEO)和双(三氟甲烷磺酰)亚胺锂(LiTFSI)盐组成的模型BCE系统的本征离子传输性质。在一系列盐浓度(锂离子与环氧乙烷重复单元的摩尔比)和温度下,对均聚物聚环氧乙烷(PEO)-LiTFSI电解质中的电导率与SEO中类似导电材料的电导率进行比较,结果表明SEO中20%至50%的PEO是无活性的。利用对畴结构和畴界面处单体浓度分布的平均场理论计算(两者均随盐浓度有很大变化),从电导率测量得出的SEO中无活性PEO的比例,可以与混合有大于几个体积百分比聚苯乙烯的PEO比例进行定量匹配。尽管BCEs中离子传输存在不利的界面效应,但此处研究的SEO的本征电导率(90°C时为10 S/cm,= 0.085)比类似分子量的SEO本体样品的报道值(90°C时为10 S/cm,= 0.085)高一个数量级。总体而言,这项工作为追求改进的BCE化学设计、界面工程和加工提供了动力和方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验