Suppr超能文献

用于双模式双频超声血管造影应用的一维电容式微机械超声换能器阵列的设计与制造

Design and Fabrication of 1-D CMUT Arrays for Dual-Mode Dual-Frequency Acoustic Angiography Applications.

作者信息

Annayev Muhammetgeldi, Minhaj Tamzid Ibn, Adelegan Oluwafemi J, Yamaner Feysel Yalcin, Dayton Paul A, Oralkan Omer

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2024 Jan;71(1):191-201. doi: 10.1109/TUFFC.2023.3342011. Epub 2024 Jan 9.

Abstract

When microbubble contrast agents are excited at low frequencies (less than 5 MHz), they resonate and produce higher-order harmonics due to their nonlinear behavior. We propose a novel scheme with a capacitive micromachined ultrasonic transducer (CMUT) array to receive high-frequency microbubble harmonics in collapse mode and to transmit a low-frequency high-pressure pulse by releasing the CMUT plate from collapse and pull it back to collapse again in the same transmit-receive cycle. By patterning and etching the substrate to create glass spacers in the device cavity we can reliably operate the CMUT in collapse mode and receive high-frequency signals. Previously, we demonstrated a single-element CMUT with spacers operating in the described fashion. In this article, we present the design and fabrication of a dual-mode, dual-frequency 1-D CMUT array with 256 elements. We present two different insulating glass spacer designs in rectangular cells for the collapse mode. For the device with torus-shaped spacers, the 3 dB receive bandwidth is from 8 to 17 MHz, and the transmitted maximum peak-to-peak pressure from 32 elements at 4 mm focal depth was 2.12 MPa with a 1.21 MPa peak negative pressure, which corresponds to a mechanical index (MI) of 0.58 at 4.3 MHz. For the device with line-shaped spacers, the 3-dB receive bandwidth at 150 V dc bias extends from 10.9 to 19.2 MHz. By increasing the bias voltage to 180 V, the 3 dB bandwidth shifts, and extends from 11.7 to 20.4 MHz. The transmitting maximum peak-to-peak pressure with 32 elements at 4 mm was 2.06 MPa with a peak negative pressure of 1.19 MPa, which corresponds to an MI of 0.62 at 3.7 MHz.

摘要

当微泡造影剂在低频(小于5兆赫兹)下被激发时,由于其非线性行为,它们会发生共振并产生高阶谐波。我们提出了一种新颖的方案,使用电容式微机械超声换能器(CMUT)阵列在微泡崩溃模式下接收高频微泡谐波,并通过在同一发射-接收周期内将CMUT板从崩溃状态释放并再次拉回到崩溃状态来发射低频高压脉冲。通过对衬底进行图案化和蚀刻,在器件腔中创建玻璃间隔物,我们可以可靠地使CMUT在崩溃模式下工作并接收高频信号。此前,我们展示了一个带有间隔物的单元素CMUT以所述方式工作。在本文中,我们介绍了一种具有256个元素的双模、双频一维CMUT阵列的设计与制造。我们在矩形单元中展示了两种不同的用于崩溃模式的绝缘玻璃间隔物设计。对于带有环形间隔物的器件,3分贝接收带宽为8至17兆赫兹,在4毫米焦深处32个元素发射的最大峰-峰值压力为2.12兆帕,峰值负压为1.21兆帕,在4.3兆赫兹时对应的机械指数(MI)为0.58。对于带有线形间隔物的器件,在150伏直流偏压下3分贝接收带宽从10.9扩展至19.2兆赫兹。通过将偏压增加到180伏,3分贝带宽发生偏移,从11.7扩展至20.4兆赫兹。在4毫米处32个元素发射的最大峰-峰值压力为2.06兆帕,峰值负压为1.19兆帕,在3.7兆赫兹时对应的MI为0.62。

相似文献

1
Design and Fabrication of 1-D CMUT Arrays for Dual-Mode Dual-Frequency Acoustic Angiography Applications.
IEEE Trans Ultrason Ferroelectr Freq Control. 2024 Jan;71(1):191-201. doi: 10.1109/TUFFC.2023.3342011. Epub 2024 Jan 9.
2
An Improved CMUT Structure Enabling Release and Collapse of the Plate in the Same Tx/Rx Cycle for Dual-Frequency Acoustic Angiography.
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Nov;67(11):2291-2302. doi: 10.1109/TUFFC.2020.3001221. Epub 2020 Jun 9.
3
A comparison between conventional and collapse-mode capacitive micromachined ultrasonic transducers in 10-MHz 1-D arrays.
IEEE Trans Ultrason Ferroelectr Freq Control. 2013 Jun;60(6):1245-55. doi: 10.1109/TUFFC.2013.2688.
4
Experimental characterization of collapse-mode CMUT operation.
IEEE Trans Ultrason Ferroelectr Freq Control. 2006 Aug;53(8):1513-23. doi: 10.1109/tuffc.2006.1665109.
5
A Handheld Imaging Probe for Acoustic Angiography With an Ultrawideband Capacitive Micromachined Ultrasonic Transducer (CMUT) Array.
IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Jul;69(7):2318-2330. doi: 10.1109/TUFFC.2022.3172566. Epub 2022 Jun 30.
8
Frequency Tuning of Collapse-Mode Capacitive Micromachined Ultrasonic Transducer.
Ultrasonics. 2017 Feb;74:144-152. doi: 10.1016/j.ultras.2016.10.002. Epub 2016 Oct 6.
9
Capacitive micromachined ultrasonic transducer design for high power transmission.
IEEE Trans Ultrason Ferroelectr Freq Control. 2005 Feb;52(2):326-39. doi: 10.1109/tuffc.2005.1406558.
10
Forward-viewing CMUT arrays for medical imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2004 Jul;51(7):887-95. doi: 10.1109/tuffc.2004.1320749.

引用本文的文献

本文引用的文献

1
A Handheld Imaging Probe for Acoustic Angiography With an Ultrawideband Capacitive Micromachined Ultrasonic Transducer (CMUT) Array.
IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Jul;69(7):2318-2330. doi: 10.1109/TUFFC.2022.3172566. Epub 2022 Jun 30.
2
Characterization of an Array-Based Dual-Frequency Transducer for Superharmonic Contrast Imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Jul;68(7):2419-2431. doi: 10.1109/TUFFC.2021.3065952. Epub 2021 Jun 29.
3
Dual-Frequency CMUT Arrays for Multiband Ultrasound Imaging Applications.
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Jul;68(7):2532-2542. doi: 10.1109/TUFFC.2021.3062071. Epub 2021 Jun 29.
4
An Improved CMUT Structure Enabling Release and Collapse of the Plate in the Same Tx/Rx Cycle for Dual-Frequency Acoustic Angiography.
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Nov;67(11):2291-2302. doi: 10.1109/TUFFC.2020.3001221. Epub 2020 Jun 9.
5
Visualization of Microvascular Angiogenesis Using Dual-Frequency Contrast-Enhanced Acoustic Angiography: A Review.
Ultrasound Med Biol. 2020 Oct;46(10):2625-2635. doi: 10.1016/j.ultrasmedbio.2020.06.009. Epub 2020 Jul 20.
6
A Nonlinear Lumped Equivalent Circuit Model for a Single Uncollapsed Square CMUT Cell.
IEEE Trans Ultrason Ferroelectr Freq Control. 2019 Aug;66(8):1340-1351. doi: 10.1109/TUFFC.2019.2914608. Epub 2019 May 3.
7
Multifrequency Interlaced CMUTs for Photoacoustic Imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2017 Feb;64(2):391-401. doi: 10.1109/TUFFC.2016.2620381. Epub 2016 Oct 24.
8
Electrostatic and Small-Signal Analysis of CMUTs With Circular and Square Anisotropic Plates.
IEEE Trans Ultrason Ferroelectr Freq Control. 2015 Aug;62(8):1563-79. doi: 10.1109/tuffc.2014.006553.
9
A three-mask process for fabricating vacuum-sealed capacitive micromachined ultrasonic transducers using anodic bonding.
IEEE Trans Ultrason Ferroelectr Freq Control. 2015 May;62(5):972-82. doi: 10.1109/TUFFC.2014.006794.
10
Dual-frequency piezoelectric transducers for contrast enhanced ultrasound imaging.
Sensors (Basel). 2014 Nov 4;14(11):20825-42. doi: 10.3390/s141120825.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验