Oralkan Omer, Bayram Baris, Yaralioglu Goksen G, Ergun A Sanli, Kupnik Mario, Yeh David T, Wygant Ira O, Khuri-Yakub Butrus T
Edward L. Ginzton Laboratory, Stanford University, Stanford, CA 94305-4088, USA.
IEEE Trans Ultrason Ferroelectr Freq Control. 2006 Aug;53(8):1513-23. doi: 10.1109/tuffc.2006.1665109.
This paper reports on the experimental characterization of collapse-mode operation of capacitive micromachined ultrasonic transducers (CMUTs). CMUTs are conventionally operated by applying a direct current (DC) bias voltage less than the collapse voltage of the membrane, so that the membrane is deflected toward the bottom electrode. In the conventional regime, there is no contact between the membrane and the substrate; the maximum alternating current (AC) displacement occurs at the center of the membrane. In collapse-mode operation, the DC bias voltage is first increased beyond the collapse voltage, then reduced without releasing the collapsed membrane. In collapse-mode operation, the center of the membrane is always in contact with the substrate. In the case of a circular membrane, the maximum AC displacement occurs along the ring formed between the center and the edge of the membrane. The experimental characterization presented in this paper includes impedance measurements in air, pulse-echo experiments in immersion, and one-way optical displacement measurements in immersion for both conventional and collapse-mode operations. A 205-microm x 205-microm 2-D CMUT array element composed of circular silicon nitride membranes is used in the experiments. In pulse-echo experiments, a custom integrated circuit (IC) comprising a pulse driver, a transmit/receive switch, a wideband low-noise preamplifier, and a line driver is used. By reducing the parasitic capacitance, the use of a custom IC enables pulse-echo measurements at high frequencies with a very small transducer. By comparing frequency response and efficiency of the transducer in conventional and collapse regimes, experimental results show that a collapsed membrane can be used to generate and detect ultrasound more efficiently than a membrane operated in the conventional mode. Furthermore, the center frequency of the collapsed membrane can be changed by varying the applied DC voltage. In this study, the center frequency of a collapsed transducer in immersion is shown to vary from 20 MHz to 28 MHz with applied DC bias; the same transducer operates at 10 MHz in the conventional mode. In conventional mode, the maximum peak-to-peak pressure is 370 kPa on the transducer surface for a 40-ns, 25-V unipolar pulse excitation. In collapse mode, a 25-ns, 25-V unipolar pulse generates 590 kPa pressure at the surface of the transducer.
本文报道了电容式微机械超声换能器(CMUT)塌陷模式操作的实验特性。传统上,CMUT通过施加小于膜塌陷电压的直流(DC)偏置电压来操作,以使膜向底部电极偏转。在传统模式下,膜与基板之间没有接触;最大交流(AC)位移发生在膜的中心。在塌陷模式操作中,首先将直流偏置电压增加到超过塌陷电压,然后在不释放塌陷膜的情况下降低电压。在塌陷模式操作中,膜的中心始终与基板接触。对于圆形膜,最大交流位移发生在膜中心与边缘之间形成的环上。本文给出的实验特性包括在空气中的阻抗测量、在浸没状态下的脉冲回波实验以及在浸没状态下对传统模式和塌陷模式操作的单向光位移测量。实验中使用了一个由圆形氮化硅膜组成的205微米×205微米的二维CMUT阵列元件。在脉冲回波实验中,使用了一个定制集成电路(IC),它包括一个脉冲驱动器、一个发射/接收开关、一个宽带低噪声前置放大器和一个线路驱动器。通过降低寄生电容,使用定制IC能够用非常小的换能器在高频下进行脉冲回波测量。通过比较换能器在传统模式和塌陷模式下的频率响应和效率,实验结果表明,塌陷膜比传统模式下操作的膜能更有效地产生和检测超声波。此外,塌陷膜的中心频率可以通过改变施加的直流电压来改变。在本研究中,浸没状态下塌陷换能器的中心频率显示随着施加的直流偏置从20兆赫兹变化到28兆赫兹;同一个换能器在传统模式下工作频率为10兆赫兹。在传统模式下,对于40纳秒、25伏单极脉冲激励,换能器表面的最大峰峰值压力为370千帕。在塌陷模式下,一个25纳秒、25伏单极脉冲在换能器表面产生590千帕的压力。