Suppr超能文献

UMAMIT44 是拟南芥叶绿体谷氨酸外排的关键因子。

UMAMIT44 is a key player in glutamate export from Arabidopsis chloroplasts.

机构信息

School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA.

Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany.

出版信息

Plant Cell. 2024 Mar 29;36(4):1119-1139. doi: 10.1093/plcell/koad310.

Abstract

Selective partitioning of amino acids among organelles, cells, tissues, and organs is essential for cellular metabolism and plant growth. Nitrogen assimilation into glutamine and glutamate and de novo biosynthesis of most protein amino acids occur in chloroplasts; therefore, various transport mechanisms must exist to accommodate their directional efflux from the stroma to the cytosol and feed the amino acids into the extraplastidial metabolic and long-distance transport pathways. Yet, Arabidopsis (Arabidopsis thaliana) transporters functioning in plastidial export of amino acids remained undiscovered. Here, USUALLY MULTIPLE ACIDS MOVE IN AND OUT TRANSPORTER 44 (UMAMIT44) was identified and shown to function in glutamate export from Arabidopsis chloroplasts. UMAMIT44 controls glutamate homeostasis within and outside of chloroplasts and influences nitrogen partitioning from leaves to sinks. Glutamate imbalances in chloroplasts and leaves of umamit44 mutants impact cellular redox state, nitrogen and carbon metabolism, and amino acid (AA) and sucrose supply of growing sinks, leading to negative effects on plant growth. Nonetheless, the mutant lines adjust to some extent by upregulating alternative pathways for glutamate synthesis outside the plastids and by mitigating oxidative stress through the production of other amino acids and antioxidants. Overall, this study establishes that the role of UMAMIT44 in glutamate export from chloroplasts is vital for controlling nitrogen availability within source leaf cells and for sink nutrition, with an impact on growth and seed yield.

摘要

氨基酸在细胞器、细胞、组织和器官之间的选择性分配对于细胞代谢和植物生长至关重要。氮同化为谷氨酰胺和谷氨酸以及大多数蛋白质氨基酸的从头生物合成发生在叶绿体中;因此,必须存在各种运输机制来适应它们从基质到细胞质的定向流出,并将氨基酸输送到质外体代谢和长途运输途径中。然而,拟南芥(Arabidopsis thaliana)中参与氨基酸质体输出的转运蛋白仍未被发现。在这里,通常多种酸在进入和输出转运蛋白 44(UMAMIT44)被鉴定并被证明在谷氨酸从拟南芥叶绿体中的输出中起作用。UMAMIT44 控制叶绿体和叶绿体外部的谷氨酸动态平衡,并影响氮从叶片到汇的分配。叶绿体和 umamit44 突变体叶片中谷氨酸失衡会影响细胞氧化还原状态、氮碳代谢以及生长汇的氨基酸(AA)和蔗糖供应,从而对植物生长产生负面影响。尽管如此,突变体系在一定程度上通过上调质外体中谷氨酸合成的替代途径以及通过产生其他氨基酸和抗氧化剂来减轻氧化应激来进行调整。总的来说,这项研究确立了 UMAMIT44 在从叶绿体中输出谷氨酸中的作用对于控制源叶细胞内氮的可用性以及对于汇营养至关重要,对生长和种子产量有影响。

相似文献

1
UMAMIT44 is a key player in glutamate export from Arabidopsis chloroplasts.
Plant Cell. 2024 Mar 29;36(4):1119-1139. doi: 10.1093/plcell/koad310.
2
Connecting Source with Sink: The Role of Arabidopsis AAP8 in Phloem Loading of Amino Acids.
Plant Physiol. 2016 May;171(1):508-21. doi: 10.1104/pp.16.00244. Epub 2016 Mar 25.
3
Leaf Amino Acid Supply Affects Photosynthetic and Plant Nitrogen Use Efficiency under Nitrogen Stress.
Plant Physiol. 2018 Sep;178(1):174-188. doi: 10.1104/pp.18.00597. Epub 2018 Aug 6.
5
The chloroplastic 2-oxoglutarate/malate transporter has dual function as the malate valve and in carbon/nitrogen metabolism.
Plant J. 2011 Jan;65(1):15-26. doi: 10.1111/j.1365-313X.2010.04397.x. Epub 2010 Nov 15.
6
PIC1, an ancient permease in Arabidopsis chloroplasts, mediates iron transport.
Plant Cell. 2007 Mar;19(3):986-1006. doi: 10.1105/tpc.106.047407. Epub 2007 Mar 2.
7
Analysis of glutamate homeostasis by overexpression of Fd-GOGAT gene in Arabidopsis thaliana.
Amino Acids. 2010 Mar;38(3):943-50. doi: 10.1007/s00726-009-0303-2. Epub 2009 May 26.
9
Role of the plastidic glucose translocator in the export of starch degradation products from the chloroplasts in Arabidopsis thaliana.
New Phytol. 2011 Apr;190(1):101-112. doi: 10.1111/j.1469-8137.2010.03580.x. Epub 2010 Dec 22.

引用本文的文献

1
Reticulata weaves the metabolic net.
Nat Plants. 2025 Aug 25. doi: 10.1038/s41477-025-02100-y.
2
RETICULATA1 is a plastid-localized basic amino acid transporter.
Nat Plants. 2025 Aug 22. doi: 10.1038/s41477-025-02080-z.
3
L-Theanine Metabolism in Tea Plants: Biological Functions and Stress Tolerance Mechanisms.
Plants (Basel). 2025 Feb 6;14(3):492. doi: 10.3390/plants14030492.
5
Highway to cell: Unravelling the main player in Arabidopsis chloroplast glutamate export.
Plant Cell. 2024 Mar 29;36(4):805-806. doi: 10.1093/plcell/koad322.

本文引用的文献

2
Plant specialized metabolism.
Curr Biol. 2023 Jun 5;33(11):R473-R478. doi: 10.1016/j.cub.2023.01.057.
3
Export of defensive glucosinolates is key for their accumulation in seeds.
Nature. 2023 May;617(7959):132-138. doi: 10.1038/s41586-023-05969-x. Epub 2023 Apr 19.
4
Merging Signaling with Structure: Functions and Mechanisms of Plant Glutamate Receptor Ion Channels.
Annu Rev Plant Biol. 2023 May 22;74:415-452. doi: 10.1146/annurev-arplant-070522-033255. Epub 2023 Feb 28.
6
Understanding source-sink interactions: Progress in model plants and translational research to crops.
Mol Plant. 2023 Jan 2;16(1):96-121. doi: 10.1016/j.molp.2022.11.015. Epub 2022 Nov 28.
7
Signaling by plant glutamate receptor-like channels: What else!
Curr Opin Plant Biol. 2022 Aug;68:102253. doi: 10.1016/j.pbi.2022.102253. Epub 2022 Jun 30.
8
Reactive oxygen species signalling in plant stress responses.
Nat Rev Mol Cell Biol. 2022 Oct;23(10):663-679. doi: 10.1038/s41580-022-00499-2. Epub 2022 Jun 27.
9
Reimport of carbon from cytosolic and vacuolar sugar pools into the Calvin-Benson cycle explains photosynthesis labeling anomalies.
Proc Natl Acad Sci U S A. 2022 Mar 15;119(11):e2121531119. doi: 10.1073/pnas.2121531119. Epub 2022 Mar 8.
10
Spatiotemporal analysis identifies ABF2 and ABF3 as key hubs of endodermal response to nitrate.
Proc Natl Acad Sci U S A. 2022 Jan 25;119(4). doi: 10.1073/pnas.2107879119.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验