Potel Fabien, Valadier Marie-Hélène, Ferrario-Méry Sylvie, Grandjean Olivier, Morin Halima, Gaufichon Laure, Boutet-Mercey Stéphanie, Lothier Jérémy, Rothstein Steven J, Hirose Naoya, Suzuki Akira
Unité de Nutrition Azotée des Plantes, Institut National de la Recherche Agronomique, Versailles, France.
FEBS J. 2009 Aug;276(15):4061-76. doi: 10.1111/j.1742-4658.2009.07114.x. Epub 2009 Jun 22.
This study was aimed at investigating the physiological role of ferredoxin-glutamate synthases (EC 1.4.1.7), NADH-glutamate synthase (EC 1.4.1.14) and carbamoylphosphate synthetase (EC 6.3.5.5) in Arabidopsis. Phenotypic analysis revealed a high level of photorespiratory ammonium, glutamine/glutamate and asparagine/aspartate in the GLU1 mutant lacking the major ferredoxin-glutamate synthase, indicating that excess photorespiratory ammonium was detoxified into amino acids for transport out of the veins. Consistent with these results, promoter analysis and in situ hybridization demonstrated that GLU1 and GLU2 were expressed in the mesophyll and phloem companion cell-sieve element complex. However, these phenotypic changes were not detected in the GLU2 mutant defective in the second ferredoxin-glutamate synthase gene. The impairment in primary ammonium assimilation in the GLT mutant under nonphotorespiratory high-CO(2) conditions underlined the importance of NADH-glutamate synthase for amino acid trafficking, given that this gene only accounted for 3% of total glutamate synthase activity. The excess ammonium from either endogenous photorespiration or the exogenous medium was shifted to arginine. The promoter analysis and slight effects on overall arginine synthesis in the T-DNA insertion mutant in the single carbamoylphosphate synthetase large subunit gene indicated that carbamoylphosphate synthetase located in the chloroplasts was not limiting for ammonium assimilation into arginine. The data provided evidence that ferredoxin-glutamate synthases, NADH-glutamate synthase and carbamoylphosphate synthetase play specific physiological roles in ammonium assimilation in the mesophyll and phloem for the synthesis and transport of glutamine, glutamate, arginine, and derived amino acids.
本研究旨在探究铁氧还蛋白 - 谷氨酸合酶(EC 1.4.1.7)、NADH - 谷氨酸合酶(EC 1.4.1.14)和氨甲酰磷酸合成酶(EC 6.3.5.5)在拟南芥中的生理作用。表型分析显示,在缺乏主要铁氧还蛋白 - 谷氨酸合酶的GLU1突变体中,光呼吸铵、谷氨酰胺/谷氨酸和天冬酰胺/天冬氨酸水平较高,这表明过量的光呼吸铵被解毒为氨基酸,以便从叶脉中运输出去。与这些结果一致,启动子分析和原位杂交表明GLU1和GLU2在叶肉和韧皮部伴胞 - 筛管分子复合体中表达。然而,在第二个铁氧还蛋白 - 谷氨酸合酶基因有缺陷的GLU2突变体中未检测到这些表型变化。在非光呼吸高二氧化碳条件下,GLT突变体中初级铵同化的受损突出了NADH - 谷氨酸合酶对氨基酸运输的重要性,因为该基因仅占总谷氨酸合酶活性的3%。来自内源性光呼吸或外源培养基的过量铵转移到了精氨酸中。对单个氨甲酰磷酸合成酶大亚基基因的T - DNA插入突变体的启动子分析以及对整体精氨酸合成的轻微影响表明,位于叶绿体中的氨甲酰磷酸合成酶对铵同化为精氨酸没有限制作用。这些数据提供了证据,表明铁氧还蛋白 - 谷氨酸合酶、NADH - 谷氨酸合酶和氨甲酰磷酸合成酶在叶肉和韧皮部的铵同化中发挥特定的生理作用,以合成和运输谷氨酰胺、谷氨酸、精氨酸及衍生氨基酸。