Department of Medical Science, Chungnam National University, Daejeon 35015, Korea.
Department of Anatomy and Cell Biology, Chungnam National University, Daejeon 35015, Korea.
Nanoscale. 2024 Jan 3;16(2):833-847. doi: 10.1039/d3nr01318a.
Astrocytes are highly activated following brain injuries, and their activation influences neuronal survival. Additionally, SOX9 expression is known to increase in reactive astrocytes. However, the role of SOX9 in activated astrocytes following ischemic brain damage has not been clearly elucidated yet. Therefore, in the present study, we investigated the role of SOX9 in reactive astrocytes using a poly-lactic--glycolic acid (PLGA) nanoparticle plasmid delivery system in a photothrombotic stroke animal model. We designed PLGA nanoparticles to exclusively enhance SOX9 gene expression in glial fibrillary acidic protein (GFAP)-immunoreactive astrocytes. Our observations indicate that PLGA nanoparticles encapsulated with GFAP:SOX9:tdTOM reduce ischemia-induced neurological deficits and infarct volume through the prostaglandin D2 pathway. Thus, the astrocyte-targeting PLGA nanoparticle plasmid delivery system provides a potential opportunity for stroke treatment. Since the only effective treatment currently available is reinstating the blood supply, cell-specific gene therapy using PLGA nanoparticles will open a new therapeutic paradigm for brain injury patients in the future.
星形胶质细胞在脑损伤后高度激活,其激活影响神经元的存活。此外,已知 SOX9 在反应性星形胶质细胞中的表达增加。然而,SOX9 在缺血性脑损伤后激活的星形胶质细胞中的作用尚未明确阐明。因此,在本研究中,我们使用聚乳酸-乙醇酸(PLGA)纳米颗粒质粒递释系统在光血栓性中风动物模型中研究了 SOX9 在反应性星形胶质细胞中的作用。我们设计了 PLGA 纳米颗粒,专门增强胶质纤维酸性蛋白(GFAP)免疫反应性星形胶质细胞中的 SOX9 基因表达。我们的观察表明,封装在 GFAP:SOX9:tdTOM 中的 PLGA 纳米颗粒可通过前列腺素 D2 途径减少缺血引起的神经功能缺损和梗死体积。因此,星形胶质细胞靶向 PLGA 纳米颗粒质粒递释系统为中风治疗提供了一个潜在的机会。由于目前唯一有效的治疗方法是恢复血液供应,因此使用 PLGA 纳米颗粒的细胞特异性基因治疗将为未来的脑损伤患者开辟新的治疗范例。