Australian Centre for Precision Health, University of South Australia, Adelaide, SA, 5000, Australia.
UniSA Allied Health and Human Performance, University of South Australia, Adelaide, SA, 5000, Australia.
Hum Genet. 2024 Jan;143(1):35-47. doi: 10.1007/s00439-023-02619-0. Epub 2023 Dec 14.
Complex multi-omics effects drive the clustering of cardiometabolic risk factors, underscoring the imperative to comprehend how individual and combined omics shape phenotypic variation. Our study partitions phenotypic variance in metabolic syndrome (MetS), blood glucose (GLU), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and blood pressure through genome, transcriptome, metabolome, and exposome (i.e., lifestyle exposome) analyses. Our analysis included a cohort of 62,822 unrelated individuals with white British ancestry, sourced from the UK biobank. We employed linear mixed models to partition phenotypic variance using the restricted maximum likelihood (REML) method, implemented in MTG2 (v2.22). We initiated the analysis by individually modeling omics, followed by subsequent integration of pairwise omics in a joint model that also accounted for the covariance and interaction between omics layers. Finally, we estimated the correlations of various omics effects between the phenotypes using bivariate REML. Significant proportions of the MetS variance were attributed to distinct data sources: genome (9.47%), transcriptome (4.24%), metabolome (14.34%), and exposome (3.77%). The phenotypic variances explained by the genome, transcriptome, metabolome, and exposome ranged from 3.28% for GLU to 25.35% for HDL-C, 0% for GLU to 19.34% for HDL-C, 4.29% for systolic blood pressure (SBP) to 35.75% for TG, and 0.89% for GLU to 10.17% for HDL-C, respectively. Significant correlations were found between genomic and transcriptomic effects for TG and HDL-C. Furthermore, significant interaction effects between omics data were detected for both MetS and its components. Interestingly, significant correlation of omics effect between the phenotypes was found. This study underscores omics' roles, interaction effects, and random-effects covariance in unveiling phenotypic variation in multi-omics domains.
复杂的多组学效应驱动着心血管代谢风险因素的聚类,这突显了理解个体和联合组学如何塑造表型变异的必要性。我们的研究通过基因组、转录组、代谢组和外显子组(即生活方式外显子组)分析,将代谢综合征 (MetS)、血糖 (GLU)、甘油三酯 (TG)、高密度脂蛋白胆固醇 (HDL-C) 和血压的表型变异进行了划分。我们的分析包括一个源自英国生物库的 62822 名无血缘关系的白种英国人队列。我们采用线性混合模型,使用受限最大似然 (REML) 方法 (在 MTG2 [v2.22] 中实现) 对表型变异进行划分。我们首先单独对组学进行建模,然后在一个联合模型中对成对组学进行后续整合,该模型还考虑了组学层之间的协方差和相互作用。最后,我们使用二元 REML 估计了各种组学效应之间在表型上的相关性。MetS 变异的显著比例归因于不同的数据源:基因组 (9.47%)、转录组 (4.24%)、代谢组 (14.34%) 和外显子组 (3.77%)。基因组、转录组、代谢组和外显子组解释的表型方差范围从 GLU 的 3.28%到 HDL-C 的 25.35%,GLU 的 0%到 HDL-C 的 19.34%,收缩压 (SBP) 的 4.29%到 TG 的 35.75%,GLU 的 0.89%到 HDL-C 的 10.17%。我们发现 TG 和 HDL-C 的基因组和转录组效应之间存在显著相关性。此外,还检测到 MetS 及其成分的组学数据之间存在显著的相互作用效应。有趣的是,我们还发现了表型之间组学效应的显著相关性。这项研究强调了组学在揭示多组学领域表型变异中的作用、相互作用效应和随机效应协方差。