Zimmer Felix, Debelak Rudolf
Division of Psychological Methods, Evaluation, and Statistics, Department of Psychology, University of Zurich.
Psychol Methods. 2025 Jun;30(3):513-536. doi: 10.1037/met0000611. Epub 2023 Dec 14.
The planning of adequately powered research designs increasingly goes beyond determining a suitable sample size. More challenging scenarios demand simultaneous tuning of multiple design parameter dimensions and can only be addressed using Monte Carlo simulation if no analytical approach is available. In addition, cost considerations, for example, in terms of monetary costs, are a relevant target for optimization. In this context, optimal design parameters can imply a desired level of power at minimum cost or maximum power at a cost threshold. We introduce a surrogate modeling framework based on machine learning predictions to solve these optimization tasks. In a simulation study, we demonstrate the efficiency for a wide range of hypothesis testing scenarios with single- and multidimensional design parameters, including t tests, analysis of variance, item response theory models, multilevel models, and multiple imputations. Our framework provides an algorithmic solution for optimizing study designs when no analytic power analysis is available, handling multiple design dimensions and cost considerations. Our implementation is publicly available in the R package mlpwr. (PsycInfo Database Record (c) 2025 APA, all rights reserved).
具备足够检验效能的研究设计规划日益超越了确定合适样本量的范畴。更具挑战性的情形需要同时调整多个设计参数维度,并且如果没有可用的分析方法,就只能使用蒙特卡罗模拟来解决。此外,成本考量,例如货币成本方面,是优化的一个相关目标。在这种背景下,最优设计参数可能意味着以最低成本达到期望的检验效能水平,或者在成本阈值下达到最大检验效能。我们引入一个基于机器学习预测的替代建模框架来解决这些优化任务。在一项模拟研究中,我们展示了该框架在广泛的假设检验场景中的效率,这些场景涉及单维和多维设计参数,包括t检验、方差分析、项目反应理论模型、多层模型以及多重插补。当没有可用的分析效能分析时,我们的框架为优化研究设计提供了一种算法解决方案,可处理多个设计维度和成本考量。我们的实现可在R包mlpwr中公开获取。(PsycInfo数据库记录(c)2025美国心理学会,保留所有权利)