文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

蛋白质纳米颗粒上的抗原间距影响疫苗接种后的抗体反应。

Antigen spacing on protein nanoparticles influences antibody responses to vaccination.

机构信息

Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195, USA.

Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.

出版信息

Cell Rep. 2023 Dec 26;42(12):113552. doi: 10.1016/j.celrep.2023.113552. Epub 2023 Dec 13.


DOI:10.1016/j.celrep.2023.113552
PMID:38096058
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10801709/
Abstract

Immunogen design approaches aim to control the specificity and quality of antibody responses elicited by next-generation vaccines. Here, we use computational protein design to generate a nanoparticle vaccine platform based on the receptor-binding domain (RBD) of influenza hemagglutinin (HA) that enables precise control of antigen conformation and spacing. HA RBDs are presented as either monomers or native-like closed trimers that are connected to the underlying nanoparticle by a rigid linker that is modularly extended to precisely control antigen spacing. Nanoparticle immunogens with decreased spacing between trimeric RBDs elicit antibodies with improved hemagglutination inhibition and neutralization potency as well as binding breadth across diverse H1 HAs. Our "trihead" nanoparticle immunogen platform provides insights into anti-HA immunity, establishes antigen spacing as an important parameter in structure-based vaccine design, and embodies several design features that could be used in next-generation vaccines against influenza and other viruses.

摘要

免疫原设计方法旨在控制下一代疫苗引起的抗体反应的特异性和质量。在这里,我们使用计算蛋白质设计生成一种基于流感血凝素(HA)受体结合域(RBD)的纳米颗粒疫苗平台,该平台能够精确控制抗原构象和间距。HA RBD 以单体或类似于天然的封闭三聚体形式呈现,通过刚性接头连接到基础纳米颗粒上,该接头通过模块化扩展来精确控制抗原间距。具有减小的三聚体 RBD 之间间距的纳米颗粒免疫原引起的抗体具有改善的血凝抑制和中和效力,以及针对各种 H1 HA 的结合广度。我们的“三头”纳米颗粒免疫原平台提供了对抗 HA 免疫的深入了解,确定了抗原间距作为基于结构的疫苗设计中的一个重要参数,并体现了可用于针对流感和其他病毒的下一代疫苗的几个设计特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ddb3/10801709/fc998633cb34/nihms-1954796-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ddb3/10801709/350afd90456e/nihms-1954796-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ddb3/10801709/f69ce1edabcf/nihms-1954796-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ddb3/10801709/65b212fc87d7/nihms-1954796-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ddb3/10801709/47b1f1fc23b0/nihms-1954796-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ddb3/10801709/fc998633cb34/nihms-1954796-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ddb3/10801709/350afd90456e/nihms-1954796-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ddb3/10801709/f69ce1edabcf/nihms-1954796-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ddb3/10801709/65b212fc87d7/nihms-1954796-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ddb3/10801709/47b1f1fc23b0/nihms-1954796-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ddb3/10801709/fc998633cb34/nihms-1954796-f0006.jpg

相似文献

[1]
Antigen spacing on protein nanoparticles influences antibody responses to vaccination.

Cell Rep. 2023-12-26

[2]
Antigen spacing on protein nanoparticles influences antibody responses to vaccination.

bioRxiv. 2023-5-24

[3]
Combinatorial immune refocusing within the influenza hemagglutinin RBD improves cross-neutralizing antibody responses.

Cell Rep. 2023-12-26

[4]
Development of a Pan-H1 Influenza Vaccine.

J Virol. 2018-10-29

[5]
Mapping of a Novel H3-Specific Broadly Neutralizing Monoclonal Antibody Targeting the Hemagglutinin Globular Head Isolated from an Elite Influenza Virus-Immunized Donor Exhibiting Serological Breadth.

J Virol. 2020-2-28

[6]
Elicitation of Protective Antibodies against 20 Years of Future H3N2 Cocirculating Influenza Virus Variants in Ferrets Preimmune to Historical H3N2 Influenza Viruses.

J Virol. 2019-1-17

[7]
Computationally Optimized Broadly Reactive Hemagglutinin Elicits Hemagglutination Inhibition Antibodies against a Panel of H3N2 Influenza Virus Cocirculating Variants.

J Virol. 2017-11-30

[8]
Mosaic nanoparticle display of diverse influenza virus hemagglutinins elicits broad B cell responses.

Nat Immunol. 2019-2-11

[9]
Antibodies elicited in humans upon chimeric hemagglutinin-based influenza virus vaccination confer FcγR-dependent protection in vivo.

Proc Natl Acad Sci U S A. 2023-10-31

[10]
Comparative Immunogenicity of Bacterially Expressed Soluble Trimers and Nanoparticle Displayed Influenza Hemagglutinin Stem Immunogens.

Front Immunol. 2022

引用本文的文献

[1]
From sequence to scaffold: computational design of protein nanoparticle vaccines from AlphaFold2-predicted building blocks.

bioRxiv. 2025-8-20

[2]
SARS-CoV-2 RBD Scaffolded by AP205 or TIP60 Nanoparticles and Delivered as mRNA Elicits Robust Neutralizing Antibody Responses.

Vaccines (Basel). 2025-7-22

[3]
Computational design of bifaceted protein nanomaterials.

Nat Mater. 2025-7-31

[4]
Design of SARS-CoV-2 RBD immunogens to focus immune responses toward conserved coronavirus epitopes.

J Virol. 2025-7-22

[5]
Nonviral protein cages as tools to decipher and combat viral threats.

Npj Viruses. 2025-5-26

[6]
Elicitation of liver-stage immunity by nanoparticle immunogens displaying P. falciparum CSP-derived antigens.

NPJ Vaccines. 2025-5-5

[7]
Chimeric receptor-binding domain vaccine design and sequential immunization enhanced broadly neutralizing antibody responses against COVID-19.

Front Immunol. 2025-3-27

[8]
Protein nanoparticle vaccines induce potent neutralizing antibody responses against MERS-CoV.

Cell Rep. 2024-12-24

[9]
Both sides now: evolutionary traits of antigens and B cells in tolerance and activation.

Front Immunol. 2024

[10]
Computationally designed mRNA-launched protein nanoparticle vaccines.

bioRxiv. 2024-7-23

本文引用的文献

[1]
Enhancing antibody responses by multivalent antigen display on thymus-independent DNA origami scaffolds.

Nat Commun. 2024-1-30

[2]
Combinatorial immune refocusing within the influenza hemagglutinin RBD improves cross-neutralizing antibody responses.

Cell Rep. 2023-12-26

[3]
Immunogenicity and safety of SARS-CoV-2 recombinant protein nanoparticle vaccine GBP510 adjuvanted with AS03: interim results of a randomised, active-controlled, observer-blinded, phase 3 trial.

EClinicalMedicine. 2023-9-7

[4]
De novo design of protein structure and function with RFdiffusion.

Nature. 2023-8

[5]
Top-down design of protein architectures with reinforcement learning.

Science. 2023-4-21

[6]
Rational design of a highly immunogenic prefusion-stabilized F glycoprotein antigen for a respiratory syncytial virus vaccine.

Sci Transl Med. 2023-4-26

[7]
DNA origami presenting the receptor binding domain of SARS-CoV-2 elicit robust protective immune response.

Commun Biol. 2023-3-23

[8]
A Multicenter, Controlled Human Infection Study of Influenza A(H1N1)pdm09 in Healthy Adults.

J Infect Dis. 2023-8-11

[9]
Low protease activity in B cell follicles promotes retention of intact antigens after immunization.

Science. 2023-1-27

[10]
Nanovaccines Displaying the Influenza Virus Hemagglutinin in an Inverted Orientation Elicit an Enhanced Stalk-Directed Antibody Response.

Adv Healthc Mater. 2023-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索