Assouline A, Pugliese L, Chakraborti H, Lee Seunghun, Bernabeu L, Jo M, Watanabe K, Taniguchi T, Glattli D C, Kumada N, Sim H-S, Parmentier F D, Roulleau P
SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif sur Yvette Cedex, France.
Université Paris-Saclay, CNRS, Centrale Supélec, 91191 Gif sur Yvette Cedex, France.
Science. 2023 Dec 15;382(6676):1260-1264. doi: 10.1126/science.adf9887. Epub 2023 Dec 14.
Flying qubits encode quantum information in propagating modes instead of stationary discrete states. Although photonic flying qubits are available, the weak interaction between photons limits the efficiency of conditional quantum gates. Conversely, electronic flying qubits can use Coulomb interactions, but the weaker quantum coherence in conventional semiconductors has hindered their realization. In this work, we engineered on-demand injection of a single electronic flying qubit state and its manipulation over the Bloch sphere. The flying qubit is a Leviton propagating in quantum Hall edge channels of a high-mobility graphene monolayer. Although single-shot qubit readout and two-qubit operations are still needed for a viable manipulation of flying qubits, the coherent manipulation of an itinerant electronic state at the single-electron level presents a highly promising alternative to conventional qubits.
飞行量子比特将量子信息编码在传播模式中,而非静止的离散状态。尽管光子飞行量子比特是可用的,但光子之间的弱相互作用限制了条件量子门的效率。相反,电子飞行量子比特可以利用库仑相互作用,然而传统半导体中较弱的量子相干性阻碍了它们的实现。在这项工作中,我们设计了按需注入单个电子飞行量子比特状态并在布洛赫球上对其进行操纵。该飞行量子比特是在高迁移率单层石墨烯的量子霍尔边缘通道中传播的列维顿。尽管对于飞行量子比特的可行操纵仍需要单次量子比特读出和双量子比特操作,但在单电子水平上对巡游电子态的相干操纵为传统量子比特提供了一种极具前景的替代方案。