1] Nanoelectronics Group, Service de Physique de l'Etat Condensé, IRAMIS/DSM (CNRS URA 2464), CEA Saclay, F-91191 Gif-sur-Yvette, France [2].
Nature. 2013 Oct 31;502(7473):659-63. doi: 10.1038/nature12713. Epub 2013 Oct 23.
The on-demand generation of pure quantum excitations is important for the operation of quantum systems, but it is particularly difficult for a system of fermions. This is because any perturbation affects all states below the Fermi energy, resulting in a complex superposition of particle and hole excitations. However, it was predicted nearly 20 years ago that a Lorentzian time-dependent potential with quantized flux generates a minimal excitation with only one particle and no hole. Here we report that such quasiparticles (hereafter termed levitons) can be generated on demand in a conductor by applying voltage pulses to a contact. Partitioning the excitations with an electronic beam splitter generates a current noise that we use to measure their number. Minimal-excitation states are observed for Lorentzian pulses, whereas for other pulse shapes there are significant contributions from holes. Further identification of levitons is provided in the energy domain with shot-noise spectroscopy, and in the time domain with electronic Hong-Ou-Mandel noise correlations. The latter, obtained by colliding synchronized levitons on a beam splitter, exemplifies the potential use of levitons for quantum information: using linear electron quantum optics in ballistic conductors, it is possible to imagine flying-qubit operation in which the Fermi statistics are exploited to entangle synchronized electrons emitted by distinct sources. Compared with electron sources based on quantum dots, the generation of levitons does not require delicate nanolithography, considerably simplifying the circuitry for scalability. Levitons are not limited to carrying a single charge, and so in a broader context n-particle levitons could find application in the study of full electron counting statistics. But they can also carry a fraction of charge if they are implemented in Luttinger liquids or in fractional quantum Hall edge channels; this allows the study of Abelian and non-Abelian quasiparticles in the time domain. Finally, the generation technique could be applied to cold atomic gases, leading to the possibility of atomic levitons.
按需产生纯量子激发对于量子系统的运行非常重要,但对于费米子系统来说尤其困难。这是因为任何扰动都会影响费米能以下的所有状态,导致粒子和空穴激发的复杂叠加。然而,近 20 年前就有人预测,具有量子通量的洛伦兹时变势可以产生具有单一粒子且无空穴的最小激发。在这里,我们报告说,通过在接触处施加电压脉冲,可以在导体中按需产生这种准粒子(此后称为“悬子”)。用电子分束器对激发进行分区,会产生我们用于测量其数量的电流噪声。在洛伦兹脉冲下观察到最小激发态,而对于其他脉冲形状,则有空穴的显著贡献。通过用电子分束器对悬子进行分光,可以在能量域中进一步识别悬子,并用电子洪-奥-曼德尔噪声相关来在时域中识别。后者通过在分束器上碰撞同步悬子来获得,这说明了悬子在量子信息中的潜在用途:在弹道导体中使用线性电子量子光学,可以想象出飞行量子比特操作,其中费米统计被用来纠缠由不同源发射的同步电子。与基于量子点的电子源相比,悬子的产生不需要精细的纳米光刻,大大简化了可扩展性的电路。悬子不限于携带单个电荷,因此在更广泛的背景下,n 粒子悬子可以在全电子计数统计的研究中找到应用。但如果它们在 Luttinger 液体或分数量子霍尔边缘通道中实现,它们也可以携带电荷的一部分;这允许在时域中研究阿贝尔和非阿贝尔准粒子。最后,产生技术可以应用于冷原子气体,从而产生原子悬子的可能性。