Suppr超能文献

通过腔总线耦合超导量子比特。

Coupling superconducting qubits via a cavity bus.

作者信息

Majer J, Chow J M, Gambetta J M, Koch Jens, Johnson B R, Schreier J A, Frunzio L, Schuster D I, Houck A A, Wallraff A, Blais A, Devoret M H, Girvin S M, Schoelkopf R J

机构信息

Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA.

出版信息

Nature. 2007 Sep 27;449(7161):443-7. doi: 10.1038/nature06184.

Abstract

Superconducting circuits are promising candidates for constructing quantum bits (qubits) in a quantum computer; single-qubit operations are now routine, and several examples of two-qubit interactions and gates have been demonstrated. These experiments show that two nearby qubits can be readily coupled with local interactions. Performing gate operations between an arbitrary pair of distant qubits is highly desirable for any quantum computer architecture, but has not yet been demonstrated. An efficient way to achieve this goal is to couple the qubits to a 'quantum bus', which distributes quantum information among the qubits. Here we show the implementation of such a quantum bus, using microwave photons confined in a transmission line cavity, to couple two superconducting qubits on opposite sides of a chip. The interaction is mediated by the exchange of virtual rather than real photons, avoiding cavity-induced loss. Using fast control of the qubits to switch the coupling effectively on and off, we demonstrate coherent transfer of quantum states between the qubits. The cavity is also used to perform multiplexed control and measurement of the qubit states. This approach can be expanded to more than two qubits, and is an attractive architecture for quantum information processing on a chip.

摘要

超导电路是在量子计算机中构建量子比特(qubit)的有前途的候选者;单比特操作现在已很常见,并且已经展示了几个双比特相互作用和门的示例。这些实验表明,两个相邻的量子比特可以很容易地通过局部相互作用进行耦合。对于任何量子计算机架构而言,在任意一对远距离量子比特之间执行门操作都是非常理想的,但尚未得到证实。实现这一目标的有效方法是将量子比特耦合到一个“量子总线”,该总线在量子比特之间分配量子信息。在这里,我们展示了这样一种量子总线的实现,即利用限制在传输线腔中的微波光子来耦合芯片相对两侧的两个超导量子比特。这种相互作用是通过虚拟光子而非真实光子的交换来介导的,从而避免了腔诱导损耗。通过对量子比特进行快速控制以有效地打开和关闭耦合,我们展示了量子态在量子比特之间的相干转移。该腔还用于对量子比特状态进行多路复用控制和测量。这种方法可以扩展到两个以上的量子比特,并且是芯片上量子信息处理的一种有吸引力的架构。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验