Suppr超能文献

用于放大 miRNA 成像的自调节双向 DNA 组装电路的工程设计。

Engineering of a Self-Regulatory Bidirectional DNA Assembly Circuit for Amplified MicroRNA Imaging.

机构信息

Engineering Research Center for Biotechnology of Active Substances (Ministry of Education), Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China.

College of Pharmacy, Chongqing Medical University, Chongqing 400016, P. R. China.

出版信息

Anal Chem. 2023 Dec 26;95(51):18731-18738. doi: 10.1021/acs.analchem.3c02822. Epub 2023 Dec 14.

Abstract

The engineering of catalytic hybridization DNA circuits represents versatile ways to orchestrate a complex flux of molecular information at the nanoscale, with potential applications in DNA-encoded biosensing, drug discovery, and therapeutics. However, the diffusive escape of intermediates and unintentional binding interactions remain an unsolved challenge. Herein, we developed a compact, yet efficient, self-regulatory assembly circuit (SAC) for achieving robust microRNA (miRNA) imaging in live cells through DNA-templated guaranteed catalytic hybridization. By integrating the toehold strand with a preblocked palindromic fragment in the stem domain, the proposed miniature SAC system allows the reactant-to-template-controlled proximal hybridization, thus facilitating the bidirectional-sustained assembly and the localization-intensified signal amplification without undesired crosstalk. With condensed components and low reactant complexity, the SAC amplifier realized high-contrast intracellular miRNA imaging. We anticipate that this simple and template-controlled design can enrich the clinical diagnosis and prognosis toolbox.

摘要

催化杂交 DNA 电路的工程代表了在纳米尺度上协调复杂分子信息流的多功能方法,在 DNA 编码生物传感、药物发现和治疗方面具有潜在的应用。然而,中间体的扩散逃逸和非故意的结合相互作用仍然是一个未解决的挑战。在这里,我们开发了一种紧凑但高效的自调节组装电路 (SAC),通过 DNA 模板保证的催化杂交,在活细胞中实现稳健的 microRNA (miRNA) 成像。通过将衔接链与茎域中的预封闭回文片段集成,所提出的微型 SAC 系统允许反应物到模板控制的近端杂交,从而促进双向持续组装和定位增强的信号放大,而不会产生不必要的串扰。由于浓缩的组件和低反应物复杂性,SAC 放大器实现了高对比度的细胞内 miRNA 成像。我们预计,这种简单且受模板控制的设计可以丰富临床诊断和预后工具包。

相似文献

1
Engineering of a Self-Regulatory Bidirectional DNA Assembly Circuit for Amplified MicroRNA Imaging.
Anal Chem. 2023 Dec 26;95(51):18731-18738. doi: 10.1021/acs.analchem.3c02822. Epub 2023 Dec 14.
2
Miniature Hierarchical DNA Hybridization Circuit for Amplified Multiplexed MicroRNA Imaging.
Anal Chem. 2023 Feb 21;95(7):3848-3855. doi: 10.1021/acs.analchem.2c05373. Epub 2023 Feb 6.
3
Construction of an Autocatalytic Hybridization Assembly Circuit for Amplified In Vivo MicroRNA Imaging.
Angew Chem Int Ed Engl. 2022 May 2;61(19):e202115489. doi: 10.1002/anie.202115489. Epub 2022 Feb 25.
4
Lighting Up Fluorescent Silver Clusters via Target-Catalyzed Hairpin Assembly for Amplified Biosensing.
Langmuir. 2018 Dec 11;34(49):14851-14857. doi: 10.1021/acs.langmuir.8b01576. Epub 2018 Aug 8.
5
Scaling up of a Self-Confined Catalytic Hybridization Circuit for Robust microRNA Imaging.
Adv Sci (Weinh). 2024 Jun;11(22):e2400517. doi: 10.1002/advs.202400517. Epub 2024 Apr 13.
6
Multiply Guaranteed Catalytic DNA Circuit for Cancer-Cell-Selective Imaging of miRNA and Robust Evaluation of Drug Resistance.
Anal Chem. 2024 Apr 9;96(14):5560-5569. doi: 10.1021/acs.analchem.4c00018. Epub 2024 Mar 26.
7
A DNAzyme-powered cross-catalytic circuit for amplified intracellular imaging.
Chem Commun (Camb). 2019 Jun 11;55(46):6519-6522. doi: 10.1039/c9cc02637a. Epub 2019 May 17.
9
Tailoring a Minimal Self-Replicate DNA Circuit for Highly Efficient Intracellular Imaging of microRNA.
Small. 2023 Apr;19(17):e2207961. doi: 10.1002/smll.202207961. Epub 2023 Jan 30.

引用本文的文献

1
Scaling up of a Self-Confined Catalytic Hybridization Circuit for Robust microRNA Imaging.
Adv Sci (Weinh). 2024 Jun;11(22):e2400517. doi: 10.1002/advs.202400517. Epub 2024 Apr 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验