College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
Research Institute of Shenzhen, Wuhan University, Shenzhen 518057, P. R. China.
Anal Chem. 2024 Apr 9;96(14):5560-5569. doi: 10.1021/acs.analchem.4c00018. Epub 2024 Mar 26.
Catalytic DNA circuits are desirable for sensitive bioimaging in living cells; yet, it remains a challenge to monitor these intricate signal communications because of the uncontrolled circuitry leakage and insufficient cell selectivity. Herein, a simple yet powerful DNA-repairing enzyme (APE1) activation strategy is introduced to achieve the site-specific exposure of a catalytic DNA circuit for realizing the selectively amplified imaging of intracellular microRNA and robust evaluation of the APE1-involved drug resistance. Specifically, the circuitry reactants are firmly blocked by the enzyme recognition/cleavage site to prevent undesirable off-site circuitry leakage. The caged DNA circuit has no target-sensing activity until its circuitry components are activated via the enzyme-mediated structural reconstitution and finally transduces the amplified fluorescence signal within the miRNA stimulation. The designed DNA circuit demonstrates an enhanced signal-to-background ratio of miRNA assay as compared with the conventional DNA circuit and enables the cancer-cell-selective imaging of miRNA. In addition, it shows robust sensing performance in visualizing the APE1-mediated chemoresistance in living cells, which is anticipated to achieve in-depth clinical diagnosis and chemotherapy research.
催化 DNA 电路在活细胞中的灵敏生物成像中是很理想的;然而,由于电路泄漏不受控制和细胞选择性不足,监测这些复杂的信号通讯仍然是一个挑战。在此,引入了一种简单而强大的 DNA 修复酶(APE1)激活策略,以实现催化 DNA 电路的位点特异性暴露,从而实现对细胞内 microRNA 的选择性放大成像和对 APE1 相关耐药性的稳健评估。具体而言,通过酶识别/切割位点将电路反应物牢固地阻断,以防止不期望的非目标电路泄漏。带有笼的 DNA 电路在其电路元件通过酶介导的结构重建被激活之前没有目标感应活性,最终在 miRNA 刺激内转换放大的荧光信号。与传统的 DNA 电路相比,设计的 DNA 电路在 miRNA 测定中表现出增强的信号与背景比,能够选择性地对 miRNA 进行成像。此外,它在可视化活细胞中 APE1 介导的化疗耐药性方面表现出稳健的传感性能,有望实现深入的临床诊断和化疗研究。