Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China.
Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
Neural Netw. 2024 Mar;171:186-199. doi: 10.1016/j.neunet.2023.12.017. Epub 2023 Dec 12.
Domain generalization (DG) aims to generalize from a large amount of source data that are fully annotated. However, it is laborious to collect labels for all source data in practice. Some research gets inspiration from semi-supervised learning (SSL) and develops a new task called semi-supervised domain generalization (SSDG). Unlabeled source data is trained jointly with labeled one to significantly improve the performance. Nevertheless, different research adopts different settings, leading to unfair comparisons. Moreover, the initial annotation of unlabeled source data is random, causing unstable and unreliable training. To this end, we first specify the training paradigm, and then leverage active learning (AL) to handle the issues. We further develop a new task called Active Semi-supervised Domain Generalization (ASSDG), which consists of two parts, i.e., SSDG and AL. We delve deep into the commonalities of SSL and AL and propose a unified framework called Gradient-Similarity-based Sample Filtering and Sorting (GSSFS) to iteratively train the SSDG and AL parts. Gradient similarity is utilized to select reliable and informative unlabeled source samples for these two parts respectively. Our methods are simple yet efficient, and extensive experiments demonstrate that our methods can achieve the best results on the DG datasets in the low-data regime without bells and whistles.
域泛化(DG)旨在从大量完全标注的源数据中进行泛化。然而,在实践中收集所有源数据的标签是很费力的。一些研究从半监督学习(SSL)中得到启发,并开发了一个新的任务,称为半监督域泛化(SSDG)。未标记的源数据与有标记的源数据一起训练,以显著提高性能。然而,不同的研究采用不同的设置,导致不公平的比较。此外,未标记源数据的初始标注是随机的,导致训练不稳定和不可靠。为此,我们首先指定训练范例,然后利用主动学习(AL)来处理这些问题。我们进一步开发了一个新的任务,称为主动半监督域泛化(ASSDG),它由两部分组成,即 SSDG 和 AL。我们深入研究了 SSL 和 AL 的共性,并提出了一个统一的框架,称为基于梯度相似性的样本过滤和排序(GSSFS),用于迭代地训练 SSDG 和 AL 部分。梯度相似性用于分别为这两个部分选择可靠和信息丰富的未标记源样本。我们的方法简单而高效,广泛的实验表明,我们的方法在低数据环境下无需花哨的技巧即可在 DG 数据集上取得最佳结果。