Suppr超能文献

使用多模态神经影像学和机器学习预测焦虑性抑郁。

Prediction of anxious depression using multimodal neuroimaging and machine learning.

作者信息

Zhou Enqi, Wang Wei, Ma Simeng, Xie Xinhui, Kang Lijun, Xu Shuxian, Deng Zipeng, Gong Qian, Nie Zhaowen, Yao Lihua, Bu Lihong, Wang Fei, Liu Zhongchun

机构信息

Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China.

PET/CT/MRI and Molecular Imaging Center, Renmin Hospital of Wuhan University, Wuhan, China.

出版信息

Neuroimage. 2024 Jan;285:120499. doi: 10.1016/j.neuroimage.2023.120499. Epub 2023 Dec 12.

Abstract

Anxious depression is a common subtype of major depressive disorder (MDD) associated with adverse outcomes and severely impaired social function. It is important to clarify the underlying neurobiology of anxious depression to refine the diagnosis and stratify patients for therapy. Here we explored associations between anxiety and brain structure/function in MDD patients. A total of 260 MDD patients and 127 healthy controls underwent three-dimensional T1-weighted structural scanning and resting-state functional magnetic resonance imaging. Demographic data were collected from all participants. Differences in gray matter volume (GMV), (fractional) amplitude of low-frequency fluctuation ((f)ALFF), regional homogeneity (ReHo), and seed point-based functional connectivity were compared between anxious MDD patients, non-anxious MDD patients, and healthy controls. A random forest model was used to predict anxiety in MDD patients using neuroimaging features. Anxious MDD patients showed significant differences in GMV in the left middle temporal gyrus and ReHo in the right superior parietal gyrus and the left precuneus than HCs. Compared with non-anxious MDD patients, patients with anxious MDD showed significantly different GMV in the left inferior temporal gyrus, left superior temporal gyrus, left superior frontal gyrus (orbital part), and left dorsolateral superior frontal gyrus; fALFF in the left middle temporal gyrus; ReHo in the inferior temporal gyrus and the superior frontal gyrus (orbital part); and functional connectivity between the left superior temporal gyrus(temporal pole) and left medial superior frontal gyrus. A diagnostic predictive random forest model built using imaging features and validated by 10-fold cross-validation distinguished anxious from non-anxious MDD with an AUC of 0.802. Patients with anxious depression exhibit dysregulation of brain regions associated with emotion regulation, cognition, and decision-making, and our diagnostic model paves the way for more accurate, objective clinical diagnosis of anxious depression.

摘要

焦虑性抑郁是重度抑郁症(MDD)的一种常见亚型,与不良后果及严重受损的社会功能相关。阐明焦虑性抑郁的潜在神经生物学机制对于优化诊断和对患者进行治疗分层至关重要。在此,我们探讨了MDD患者焦虑与脑结构/功能之间的关联。共有260例MDD患者和127名健康对照者接受了三维T1加权结构扫描和静息态功能磁共振成像检查。收集了所有参与者的人口统计学数据。比较了焦虑型MDD患者、非焦虑型MDD患者和健康对照者之间的灰质体积(GMV)、低频波动(分数)振幅((f)ALFF)、局部一致性(ReHo)以及基于种子点功能连接的差异。使用随机森林模型,利用神经影像学特征预测MDD患者的焦虑情况。与健康对照者相比,焦虑型MDD患者在左侧颞中回的GMV以及右侧顶上叶和左侧楔前叶的ReHo方面存在显著差异。与非焦虑型MDD患者相比,焦虑型MDD患者在左侧颞下回、左侧颞上回、左侧额上回(眶部)和左侧背外侧额上回的GMV;左侧颞中回的fALFF;颞下回和额上回(眶部)的ReHo;以及左侧颞上回(颞极)与左侧额内侧上回之间的功能连接方面存在显著差异。使用影像学特征构建并经10倍交叉验证的诊断预测随机森林模型区分焦虑型和非焦虑型MDD的曲线下面积(AUC)为0.802。焦虑性抑郁患者表现出与情绪调节、认知和决策相关脑区的调节异常,我们的诊断模型为焦虑性抑郁更准确、客观的临床诊断铺平了道路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验