Suppr超能文献

为什么 U 重要:mRNA 中假尿嘧啶修饰的检测和功能。

Why U matters: detection and functions of pseudouridine modifications in mRNAs.

机构信息

Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA.

Department of Chemistry, Stanford University, Stanford, CA 94305, USA.

出版信息

Trends Biochem Sci. 2024 Jan;49(1):12-27. doi: 10.1016/j.tibs.2023.10.008. Epub 2023 Dec 14.

Abstract

The uridine modifications pseudouridine (Ψ), dihydrouridine, and 5-methyluridine are present in eukaryotic mRNAs. Many uridine-modifying enzymes are associated with human disease, underscoring the importance of uncovering the functions of uridine modifications in mRNAs. These modified uridines have chemical properties distinct from those of canonical uridines, which impact RNA structure and RNA-protein interactions. Ψ, the most abundant of these uridine modifications, is present across (pre-)mRNAs. Recent work has shown that many Ψs are present at intermediate to high stoichiometries that are likely conducive to function and at locations that are poised to influence pre-/mRNA processing. Technological innovations and mechanistic investigations are unveiling the functions of uridine modifications in pre-mRNA splicing, translation, and mRNA stability, which are discussed in this review.

摘要

尿嘧啶修饰核苷假尿嘧啶(Ψ)、二氢尿嘧啶和 5-甲基尿嘧啶存在于真核生物的 mRNA 中。许多尿嘧啶修饰酶与人类疾病相关,这突显了揭示 mRNA 中尿嘧啶修饰功能的重要性。这些修饰的尿嘧啶具有与典型尿嘧啶不同的化学性质,影响 RNA 结构和 RNA-蛋白质相互作用。在这些尿嘧啶修饰中,最为丰富的是 Ψ,它存在于(前)mRNA 中。最近的研究表明,许多 Ψ 以可能有利于功能的中等至高化学计量存在,并位于可能影响前/mRNA 加工的位置。技术创新和机制研究正在揭示尿嘧啶修饰在 pre-mRNA 剪接、翻译和 mRNA 稳定性中的功能,本文对此进行了讨论。

相似文献

1
Why U matters: detection and functions of pseudouridine modifications in mRNAs.
Trends Biochem Sci. 2024 Jan;49(1):12-27. doi: 10.1016/j.tibs.2023.10.008. Epub 2023 Dec 14.
2
Pseudouridinylation of mRNA coding sequences alters translation.
Proc Natl Acad Sci U S A. 2019 Nov 12;116(46):23068-23074. doi: 10.1073/pnas.1821754116. Epub 2019 Oct 31.
3
Post-transcriptional pseudouridylation in mRNA as well as in some major types of noncoding RNAs.
Biochim Biophys Acta Gene Regul Mech. 2019 Mar;1862(3):230-239. doi: 10.1016/j.bbagrm.2018.11.002. Epub 2018 Nov 8.
4
Pseudouridylation-mediated gene expression modulation.
Biochem J. 2024 Jan 10;481(1):1-16. doi: 10.1042/BCJ20230096.
5
Mapping of pseudouridine residues on cellular and viral transcripts using a novel antibody-based technique.
RNA. 2021 Nov;27(11):1400-1411. doi: 10.1261/rna.078940.121. Epub 2021 Aug 10.
6
Pseudouridylation: A new player in co-transcriptional splicing regulation.
Mol Cell. 2022 Feb 3;82(3):495-496. doi: 10.1016/j.molcel.2022.01.010.
7
Pseudouridine in RNA: what, where, how, and why.
IUBMB Life. 2000 May;49(5):341-51. doi: 10.1080/152165400410182.
8
RNA-guided isomerization of uridine to pseudouridine--pseudouridylation.
RNA Biol. 2014;11(12):1483-94. doi: 10.4161/15476286.2014.972855.
9
Decoding the 'Fifth' Nucleotide: Impact of RNA Pseudouridylation on Gene Expression and Human Disease.
Mol Biotechnol. 2024 Jul;66(7):1581-1598. doi: 10.1007/s12033-023-00792-1. Epub 2023 Jun 21.
10
Effects of mRNA Modifications on Translation: An Overview.
Methods Mol Biol. 2021;2298:327-356. doi: 10.1007/978-1-0716-1374-0_20.

引用本文的文献

1
A Mass Spectrometry-Based Pipeline for Analyzing RNA Modifications in Cells and Tissues.
Methods Mol Biol. 2025;2962:199-213. doi: 10.1007/978-1-0716-4726-4_14.
2
Chemically modified non-coding RNAs in cancer.
Expert Rev Mol Med. 2025 Jun 9;27:e19. doi: 10.1017/erm.2025.10007.
3
Functions and therapeutic applications of pseudouridylation.
Nat Rev Mol Cell Biol. 2025 May 20. doi: 10.1038/s41580-025-00852-1.
4
Impact of intraamniotic inflammation on tryptophan metabolism in the placenta-fetal brain axis in rats.
Reproduction. 2025 Apr 18;169(5). doi: 10.1530/REP-24-0378. Print 2025 May 1.
5
RNA modifications in the tumor microenvironment: insights into the cancer-immunity cycle and beyond.
Exp Hematol Oncol. 2025 Apr 2;14(1):48. doi: 10.1186/s40164-025-00648-1.
6
The zebrafish () snoRNAome.
NAR Genom Bioinform. 2025 Mar 5;7(1):lqaf013. doi: 10.1093/nargab/lqaf013. eCollection 2025 Mar.
7
Promoted read-through and mutation against pseudouridine-CMC by an evolved reverse transcriptase.
Commun Biol. 2025 Jan 11;8(1):40. doi: 10.1038/s42003-025-07467-4.
8
Group 3 Innate Lymphoid Cells: A Potential Therapeutic Target for Steroid Resistant Asthma.
Clin Rev Allergy Immunol. 2024 Dec 27;68(1):1. doi: 10.1007/s12016-024-09012-3.
9
RNA modifications: emerging players in the regulation of reproduction and development.
Acta Biochim Biophys Sin (Shanghai). 2024 Nov 21;57(1):33-58. doi: 10.3724/abbs.2024201.
10
Progress and prospects of mRNA-based drugs in pre-clinical and clinical applications.
Signal Transduct Target Ther. 2024 Nov 14;9(1):322. doi: 10.1038/s41392-024-02002-z.

本文引用的文献

1
N1-Methylpseudouridine and pseudouridine modifications modulate mRNA decoding during translation.
Nat Commun. 2024 Sep 16;15(1):8119. doi: 10.1038/s41467-024-51301-0.
2
Multicellular, IVT-derived, unmodified human transcriptome for nanopore-direct RNA analysis.
GigaByte. 2024 Jun 17;2024:gigabyte129. doi: 10.46471/gigabyte.129. eCollection 2024.
3
Decoding the 'Fifth' Nucleotide: Impact of RNA Pseudouridylation on Gene Expression and Human Disease.
Mol Biotechnol. 2024 Jul;66(7):1581-1598. doi: 10.1007/s12033-023-00792-1. Epub 2023 Jun 21.
4
Pre-mRNA splicing and its cotranscriptional connections.
Trends Genet. 2023 Sep;39(9):672-685. doi: 10.1016/j.tig.2023.04.008. Epub 2023 May 24.
5
Methylated guanosine and uridine modifications in mRNAs modulate translation elongation.
RSC Chem Biol. 2023 Feb 20;4(5):363-378. doi: 10.1039/d2cb00229a. eCollection 2023 May 10.
6
Expression patterns of eight RNA-modified regulators correlating with immune infiltrates during the progression of osteoarthritis.
Front Immunol. 2023 Mar 15;14:1019445. doi: 10.3389/fimmu.2023.1019445. eCollection 2023.
7
Quantitative profiling of pseudouridylation landscape in the human transcriptome.
Nat Chem Biol. 2023 Oct;19(10):1185-1195. doi: 10.1038/s41589-023-01304-7. Epub 2023 Mar 30.
8
Structural and dynamic effects of pseudouridine modifications on noncanonical interactions in RNA.
RNA. 2023 Jun;29(6):790-807. doi: 10.1261/rna.079506.122. Epub 2023 Mar 3.
9
Targeted pseudouridylation: An approach for suppressing nonsense mutations in disease genes.
Mol Cell. 2023 Feb 16;83(4):637-651.e9. doi: 10.1016/j.molcel.2023.01.009. Epub 2023 Feb 9.
10
The Inflammatory Gene of the Entorhinal Cortex as an Early Diagnostic Target for Alzheimer's Disease.
Biomedicines. 2023 Jan 12;11(1):194. doi: 10.3390/biomedicines11010194.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验