Shimano Yuho, Kutana Alex, Asahi Ryoji
Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan.
Sci Rep. 2023 Dec 14;13(1):22236. doi: 10.1038/s41598-023-49603-2.
Discovering new stable materials with large dielectric permittivity is important for future energy storage and electronics applications. Theoretical and computational approaches help design new materials by elucidating microscopic mechanisms and establishing structure-property relations. Ab initio methods can be used to reliably predict the dielectric response, but for fast materials screening, machine learning (ML) approaches, which can directly infer properties from the structural information, are needed. Here, random forest and graph convolutional neural network models are trained and tested to predict the dielectric constant from the structural information. We create a database of the dielectric properties of oxides and design, train, and test the two ML models. Both approaches show similar performance and can successfully predict response based on the structure. The analysis of the feature importance allows identification of local geometric features leading to the high dielectric permittivity of the crystal. Dimensionality reduction and clustering further confirms the relevance of descriptors and compositional features for obtaining high dielectric permittivity.
发现具有大介电常数的新型稳定材料对于未来的能量存储和电子应用至关重要。理论和计算方法通过阐明微观机制和建立结构-性能关系来帮助设计新材料。从头算方法可用于可靠地预测介电响应,但为了快速筛选材料,需要能够直接从结构信息推断性能的机器学习(ML)方法。在这里,训练并测试了随机森林和图卷积神经网络模型,以从结构信息预测介电常数。我们创建了一个氧化物介电性能数据库,并设计、训练和测试了这两种ML模型。两种方法都显示出相似的性能,并且可以基于结构成功预测响应。对特征重要性的分析允许识别导致晶体高介电常数的局部几何特征。降维和聚类进一步证实了描述符和组成特征对于获得高介电常数的相关性。