Suppr超能文献

分子图卷积:超越指纹图谱

Molecular graph convolutions: moving beyond fingerprints.

作者信息

Kearnes Steven, McCloskey Kevin, Berndl Marc, Pande Vijay, Riley Patrick

机构信息

Stanford University, 318 Campus Dr. S296, Stanford, CA, 94305, USA.

Google Inc., 1600 Amphitheatre Pkwy, Mountain View, CA, 94043, USA.

出版信息

J Comput Aided Mol Des. 2016 Aug;30(8):595-608. doi: 10.1007/s10822-016-9938-8. Epub 2016 Aug 24.

Abstract

Molecular "fingerprints" encoding structural information are the workhorse of cheminformatics and machine learning in drug discovery applications. However, fingerprint representations necessarily emphasize particular aspects of the molecular structure while ignoring others, rather than allowing the model to make data-driven decisions. We describe molecular graph convolutions, a machine learning architecture for learning from undirected graphs, specifically small molecules. Graph convolutions use a simple encoding of the molecular graph-atoms, bonds, distances, etc.-which allows the model to take greater advantage of information in the graph structure. Although graph convolutions do not outperform all fingerprint-based methods, they (along with other graph-based methods) represent a new paradigm in ligand-based virtual screening with exciting opportunities for future improvement.

摘要

编码结构信息的分子“指纹”是药物发现应用中化学信息学和机器学习的主力军。然而,指纹表示必然会强调分子结构的特定方面,而忽略其他方面,而不是让模型做出数据驱动的决策。我们描述了分子图卷积,这是一种用于从无向图(特别是小分子)中学习的机器学习架构。图卷积使用分子图的简单编码——原子、键、距离等——这使得模型能够更好地利用图结构中的信息。尽管图卷积并不优于所有基于指纹的方法,但它们(以及其他基于图的方法)代表了基于配体的虚拟筛选中的一种新范式,具有未来改进的令人兴奋的机会。

相似文献

1
Molecular graph convolutions: moving beyond fingerprints.
J Comput Aided Mol Des. 2016 Aug;30(8):595-608. doi: 10.1007/s10822-016-9938-8. Epub 2016 Aug 24.
4
De Novo Molecule Design by Translating from Reduced Graphs to SMILES.
J Chem Inf Model. 2019 Mar 25;59(3):1136-1146. doi: 10.1021/acs.jcim.8b00626. Epub 2018 Dec 21.
6
A comprehensive comparison of molecular feature representations for use in predictive modeling.
Comput Biol Med. 2021 Mar;130:104197. doi: 10.1016/j.compbiomed.2020.104197. Epub 2021 Jan 9.
7
Deep Learning in Drug Discovery.
Mol Inform. 2016 Jan;35(1):3-14. doi: 10.1002/minf.201501008. Epub 2015 Dec 30.
8
ROCS-derived features for virtual screening.
J Comput Aided Mol Des. 2016 Aug;30(8):609-17. doi: 10.1007/s10822-016-9959-3. Epub 2016 Sep 8.
10
Metric learning with spectral graph convolutions on brain connectivity networks.
Neuroimage. 2018 Apr 1;169:431-442. doi: 10.1016/j.neuroimage.2017.12.052. Epub 2017 Dec 24.

引用本文的文献

2
R2eGIN: Residual Reconstruction Enhanced Graph Isomorphism Network for Accurate Prediction of Poly (ADP-Ribose) Polymerase Inhibitors.
Bioinform Biol Insights. 2025 Aug 29;19:11779322251366087. doi: 10.1177/11779322251366087. eCollection 2025.
4
A deep-learning approach to predict reproductive toxicity of chemicals using communicative message passing neural network.
Front Toxicol. 2025 Jul 22;7:1640612. doi: 10.3389/ftox.2025.1640612. eCollection 2025.
6
CPI-MIF: Compound-Protein Interaction Prediction with Multiview Information Fusion.
ACS Omega. 2025 Jul 13;10(28):30155-30166. doi: 10.1021/acsomega.5c00113. eCollection 2025 Jul 22.
7
Graph Convolutional Neural Network-Enabled Frontier Molecular Orbital Prediction: A Case Study with Neurotransmitters and Antidepressants.
J Chem Inf Model. 2025 Jul 28;65(14):7447-7462. doi: 10.1021/acs.jcim.5c00724. Epub 2025 Jul 17.
8
Fingerprint-enhanced hierarchical molecular graph neural networks for property prediction.
J Pharm Anal. 2025 Jun;15(6):101242. doi: 10.1016/j.jpha.2025.101242. Epub 2025 Feb 20.

本文引用的文献

1
Deep learning.
Nature. 2015 May 28;521(7553):436-44. doi: 10.1038/nature14539.
2
Deep neural nets as a method for quantitative structure-activity relationships.
J Chem Inf Model. 2015 Feb 23;55(2):263-74. doi: 10.1021/ci500747n. Epub 2015 Feb 17.
3
Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules.
J Chem Inf Model. 2013 Jul 22;53(7):1563-75. doi: 10.1021/ci400187y. Epub 2013 Jul 2.
4
Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking.
J Med Chem. 2012 Jul 26;55(14):6582-94. doi: 10.1021/jm300687e. Epub 2012 Jul 5.
5
Rethinking molecular similarity: comparing compounds on the basis of biological activity.
ACS Chem Biol. 2012 Aug 17;7(8):1399-409. doi: 10.1021/cb3001028. Epub 2012 May 31.
6
PubChem's BioAssay Database.
Nucleic Acids Res. 2012 Jan;40(Database issue):D400-12. doi: 10.1093/nar/gkr1132. Epub 2011 Dec 2.
7
Extended-connectivity fingerprints.
J Chem Inf Model. 2010 May 24;50(5):742-54. doi: 10.1021/ci100050t.
8
Molecular shape and medicinal chemistry: a perspective.
J Med Chem. 2010 May 27;53(10):3862-86. doi: 10.1021/jm900818s.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验