Kearnes Steven, McCloskey Kevin, Berndl Marc, Pande Vijay, Riley Patrick
Stanford University, 318 Campus Dr. S296, Stanford, CA, 94305, USA.
Google Inc., 1600 Amphitheatre Pkwy, Mountain View, CA, 94043, USA.
J Comput Aided Mol Des. 2016 Aug;30(8):595-608. doi: 10.1007/s10822-016-9938-8. Epub 2016 Aug 24.
Molecular "fingerprints" encoding structural information are the workhorse of cheminformatics and machine learning in drug discovery applications. However, fingerprint representations necessarily emphasize particular aspects of the molecular structure while ignoring others, rather than allowing the model to make data-driven decisions. We describe molecular graph convolutions, a machine learning architecture for learning from undirected graphs, specifically small molecules. Graph convolutions use a simple encoding of the molecular graph-atoms, bonds, distances, etc.-which allows the model to take greater advantage of information in the graph structure. Although graph convolutions do not outperform all fingerprint-based methods, they (along with other graph-based methods) represent a new paradigm in ligand-based virtual screening with exciting opportunities for future improvement.
编码结构信息的分子“指纹”是药物发现应用中化学信息学和机器学习的主力军。然而,指纹表示必然会强调分子结构的特定方面,而忽略其他方面,而不是让模型做出数据驱动的决策。我们描述了分子图卷积,这是一种用于从无向图(特别是小分子)中学习的机器学习架构。图卷积使用分子图的简单编码——原子、键、距离等——这使得模型能够更好地利用图结构中的信息。尽管图卷积并不优于所有基于指纹的方法,但它们(以及其他基于图的方法)代表了基于配体的虚拟筛选中的一种新范式,具有未来改进的令人兴奋的机会。