Kutana Alex, Shimizu Koji, Watanabe Satoshi, Asahi Ryoji
Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan.
National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.
Sci Rep. 2025 May 14;15(1):16719. doi: 10.1038/s41598-025-01250-5.
Graph convolutional neural networks have been instrumental in machine learning of material properties. When representing tensorial properties, weights and descriptors of a physics-informed network must obey certain transformation rules to ensure the independence of the property on the choice of the reference frame. Here we explicitly encode such properties using an equivariant graph convolutional neural network. The network respects rotational symmetries of the crystal throughout by using equivariant weights and descriptors and provides a tensorial output of the target value. Applications to tensors of atomic Born effective charges in diverse materials including perovskite oxides, LiPO, and ZrO, are demonstrated, and good performance and generalization ability is obtained.
图卷积神经网络在材料属性的机器学习中发挥了重要作用。在表示张量属性时,物理信息网络的权重和描述符必须遵守特定的变换规则,以确保属性与参考系的选择无关。在这里,我们使用等变图卷积神经网络明确地对这些属性进行编码。该网络通过使用等变权重和描述符,始终尊重晶体的旋转对称性,并提供目标值的张量输出。展示了该网络在包括钙钛矿氧化物、磷酸锂和氧化锆在内的多种材料的原子Born有效电荷张量上的应用,并获得了良好的性能和泛化能力。