Suppr超能文献

解决算法偏差对健康和医疗保健中种族和民族差异影响的指导原则。

Guiding Principles to Address the Impact of Algorithm Bias on Racial and Ethnic Disparities in Health and Health Care.

机构信息

University of Chicago, Chicago, Illinois.

Oracle Health, Austin, Texas.

出版信息

JAMA Netw Open. 2023 Dec 1;6(12):e2345050. doi: 10.1001/jamanetworkopen.2023.45050.

Abstract

IMPORTANCE

Health care algorithms are used for diagnosis, treatment, prognosis, risk stratification, and allocation of resources. Bias in the development and use of algorithms can lead to worse outcomes for racial and ethnic minoritized groups and other historically marginalized populations such as individuals with lower income.

OBJECTIVE

To provide a conceptual framework and guiding principles for mitigating and preventing bias in health care algorithms to promote health and health care equity.

EVIDENCE REVIEW

The Agency for Healthcare Research and Quality and the National Institute for Minority Health and Health Disparities convened a diverse panel of experts to review evidence, hear from stakeholders, and receive community feedback.

FINDINGS

The panel developed a conceptual framework to apply guiding principles across an algorithm's life cycle, centering health and health care equity for patients and communities as the goal, within the wider context of structural racism and discrimination. Multiple stakeholders can mitigate and prevent bias at each phase of the algorithm life cycle, including problem formulation (phase 1); data selection, assessment, and management (phase 2); algorithm development, training, and validation (phase 3); deployment and integration of algorithms in intended settings (phase 4); and algorithm monitoring, maintenance, updating, or deimplementation (phase 5). Five principles should guide these efforts: (1) promote health and health care equity during all phases of the health care algorithm life cycle; (2) ensure health care algorithms and their use are transparent and explainable; (3) authentically engage patients and communities during all phases of the health care algorithm life cycle and earn trustworthiness; (4) explicitly identify health care algorithmic fairness issues and trade-offs; and (5) establish accountability for equity and fairness in outcomes from health care algorithms.

CONCLUSIONS AND RELEVANCE

Multiple stakeholders must partner to create systems, processes, regulations, incentives, standards, and policies to mitigate and prevent algorithmic bias. Reforms should implement guiding principles that support promotion of health and health care equity in all phases of the algorithm life cycle as well as transparency and explainability, authentic community engagement and ethical partnerships, explicit identification of fairness issues and trade-offs, and accountability for equity and fairness.

摘要

重要性

医疗保健算法被用于诊断、治疗、预后、风险分层以及资源分配。算法在开发和使用过程中的偏差可能导致种族和少数民族群体以及其他历史上处于边缘地位的人群(如收入较低的个人)的结果恶化。

目的

提供一个概念框架和指导原则,以减轻和预防医疗保健算法中的偏差,从而促进健康和医疗保健公平。

证据审查

美国医疗保健研究与质量署和国家少数民族健康与健康差异研究所召集了一个多元化的专家小组,审查证据、听取利益攸关方的意见并接受社区反馈。

发现

该小组制定了一个概念框架,将指导原则应用于算法的生命周期中,以患者和社区的健康和医疗保健公平为目标,同时考虑到结构性种族主义和歧视的更广泛背景。多个利益攸关方可以在算法生命周期的每个阶段减轻和预防偏差,包括问题制定(第 1 阶段);数据选择、评估和管理(第 2 阶段);算法开发、培训和验证(第 3 阶段);算法在预期环境中的部署和整合(第 4 阶段);以及算法监测、维护、更新或停用(第 5 阶段)。五项原则应指导这些努力:(1)在医疗保健算法生命周期的所有阶段促进健康和医疗保健公平;(2)确保医疗保健算法及其使用是透明和可解释的;(3)在医疗保健算法生命周期的所有阶段真实地参与患者和社区,并赢得信任;(4)明确识别医疗保健算法公平性问题和权衡;(5)为医疗保健算法的结果建立公平和公正的问责制。

结论和相关性

多个利益攸关方必须合作建立系统、流程、法规、激励措施、标准和政策,以减轻和预防算法偏差。改革应实施指导原则,支持在算法生命周期的所有阶段促进健康和医疗保健公平,以及透明度和可解释性、真实的社区参与和道德伙伴关系、明确识别公平性问题和权衡、以及公平和公正的问责制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/685d/11181958/1a53cb7627f7/nihms-1999312-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验