Cramer Dario A T, Yin Victor, Caval Tomislav, Franc Vojtech, Yu Dingyi, Wu Guojie, Lloyd Gordon, Langendorf Christopher, Whisstock James C, Law Ruby H P, Heck Albert J R
Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Science, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Centre, University of Utrecht, Utrecht, The Netherlands.
Mass Spectrometry Facility, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.
Mol Cell Proteomics. 2024 Jan;23(1):100696. doi: 10.1016/j.mcpro.2023.100696. Epub 2023 Dec 13.
Plasminogen (Plg), the zymogen of plasmin (Plm), is a glycoprotein involved in fibrinolysis and a wide variety of other physiological processes. Plg dysregulation has been implicated in a range of diseases. Classically, human Plg is categorized into two types, supposedly having different functional features, based on the presence (type I) or absence (type II) of a single N-linked glycan. Using high-resolution native mass spectrometry, we uncovered that the proteoform profiles of human Plg (and Plm) are substantially more extensive than this simple binary classification. In samples derived from human plasma, we identified up to 14 distinct proteoforms of Plg, including a novel highly stoichiometric phosphorylation site at Ser339. To elucidate the potential functional effects of these post-translational modifications, we performed proteoform-resolved kinetic analyses of the Plg-to-Plm conversion using several canonical activators. This conversion is thought to involve at least two independent cleavage events: one to remove the N-terminal peptide and another to release the active catalytic site. Our analyses reveal that these processes are not independent but are instead tightly regulated and occur in a step-wise manner. Notably, N-terminal cleavage at the canonical site (Lys77) does not occur directly from intact Plg. Instead, an activation intermediate corresponding to cleavage at Arg68 is initially produced, which only then is further processed to the canonical Lys77 product. Based on our results, we propose a refined categorization for human Plg proteoforms. In addition, we reveal that the proteoform profile of human Plg is more extensive than that of rat Plg, which lacks, for instance, the here-described phosphorylation at Ser339.
纤溶酶原(Plg)是纤溶酶(Plm)的酶原,是一种参与纤维蛋白溶解及多种其他生理过程的糖蛋白。Plg失调与一系列疾病有关。传统上,人类Plg根据单个N-连接聚糖的存在(I型)或缺失(II型)分为两种类型,据推测具有不同的功能特征。使用高分辨率天然质谱,我们发现人类Plg(和Plm)的蛋白质异构体谱比这种简单的二元分类要广泛得多。在源自人血浆的样本中,我们鉴定出多达14种不同的Plg蛋白质异构体,包括Ser339处一个新的高度化学计量的磷酸化位点。为了阐明这些翻译后修饰的潜在功能影响,我们使用几种典型激活剂对Plg向Plm的转化进行了蛋白质异构体解析动力学分析。这种转化被认为涉及至少两个独立的切割事件:一个是去除N端肽,另一个是释放活性催化位点。我们的分析表明,这些过程不是独立的,而是受到严格调控并以逐步方式发生。值得注意的是,在经典位点(Lys77)的N端切割并非直接从完整的Plg发生。相反,最初产生的是对应于Arg68处切割的激活中间体,并随后进一步加工成经典的Lys77产物。基于我们的结果,我们提出了人类Plg蛋白质异构体的精细分类。此外,我们还发现人类Plg的蛋白质异构体谱比大鼠Plg更广泛,例如大鼠Plg缺乏此处描述的Ser339磷酸化。