Suppr超能文献

棘轮合成

Ratcheting synthesis.

作者信息

Borsley Stefan, Gallagher James M, Leigh David A, Roberts Benjamin M W

机构信息

Department of Chemistry, University of Manchester, Manchester, UK.

出版信息

Nat Rev Chem. 2024 Jan;8(1):8-29. doi: 10.1038/s41570-023-00558-y. Epub 2023 Dec 15.

Abstract

Synthetic chemistry has traditionally relied on reactions between reactants of high chemical potential and transformations that proceed energetically downhill to either a global or local minimum (thermodynamic or kinetic control). Catalysts can be used to manipulate kinetic control, lowering activation energies to influence reaction outcomes. However, such chemistry is still constrained by the shape of one-dimensional reaction coordinates. Coupling synthesis to an orthogonal energy input can allow ratcheting of chemical reaction outcomes, reminiscent of the ways that molecular machines ratchet random thermal motion to bias conformational dynamics. This fundamentally distinct approach to synthesis allows multi-dimensional potential energy surfaces to be navigated, enabling reaction outcomes that cannot be achieved under conventional kinetic or thermodynamic control. In this Review, we discuss how ratcheted synthesis is ubiquitous throughout biology and consider how chemists might harness ratchet mechanisms to accelerate catalysis, drive chemical reactions uphill and programme complex reaction sequences.

摘要

传统上,合成化学依赖于具有高化学势的反应物之间的反应以及能量上向全局或局部最小值下降的转变(热力学或动力学控制)。催化剂可用于操控动力学控制,降低活化能以影响反应结果。然而,这种化学方法仍受一维反应坐标形状的限制。将合成与正交能量输入相耦合可以实现化学反应结果的棘轮效应,这让人联想到分子机器将随机热运动棘轮化以偏向构象动力学的方式。这种从根本上截然不同的合成方法能够在多维势能面上进行导航,从而实现传统动力学或热力学控制下无法达成的反应结果。在本综述中,我们讨论了棘轮合成在整个生物学中是如何普遍存在的,并思考化学家如何利用棘轮机制来加速催化、推动化学反应向上进行以及编排复杂的反应序列。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验