Suppr超能文献

利用催化作用使化学远离平衡:布朗棘轮中的动力学不对称性、力冲程和 Curtin-Hammett 原理。

Using Catalysis to Drive Chemistry Away from Equilibrium: Relating Kinetic Asymmetry, Power Strokes, and the Curtin-Hammett Principle in Brownian Ratchets.

机构信息

Department of Chemistry, University of Manchester, Oxford Road, ManchesterM13 9PL, United Kingdom.

Institute of Supramolecular Science and Engineering (ISIS), University of Strasbourg, 67000Strasbourg, France.

出版信息

J Am Chem Soc. 2022 Nov 9;144(44):20153-20164. doi: 10.1021/jacs.2c08723. Epub 2022 Oct 26.

Abstract

Chemically fueled autonomous molecular machines are catalysis-driven systems governed by Brownian information ratchet mechanisms. One fundamental principle behind their operation is kinetic asymmetry, which quantifies the directionality of molecular motors. However, it is difficult for synthetic chemists to apply this concept to molecular design because kinetic asymmetry is usually introduced in abstract mathematical terms involving experimentally inaccessible parameters. Furthermore, two seemingly contradictory mechanisms have been proposed for chemically driven autonomous molecular machines: Brownian ratchet and power stroke mechanisms. This Perspective addresses both these issues, providing accessible and experimentally useful design principles for catalysis-driven molecular machinery. We relate kinetic asymmetry to the Curtin-Hammett principle using a synthetic rotary motor and a kinesin walker as illustrative examples. Our approach describes these molecular motors in terms of the Brownian ratchet mechanism but pinpoints both chemical gating and power strokes as tunable design elements that can affect kinetic asymmetry. We explain why this approach to kinetic asymmetry is consistent with previous ones and outline conditions where power strokes can be useful design elements. Finally, we discuss the role of information, a concept used with different meanings in the literature. We hope that this Perspective will be accessible to a broad range of chemists, clarifying the parameters that can be usefully controlled in the design and synthesis of molecular machines and related systems. It may also aid a more comprehensive and interdisciplinary understanding of biomolecular machinery.

摘要

化学驱动自主分子机器是由布朗棘轮机制驱动的催化体系。其操作背后的一个基本原理是动力学不对称性,它量化了分子马达的方向性。然而,合成化学家很难将这一概念应用于分子设计,因为动力学不对称性通常以涉及实验不可访问参数的抽象数学术语引入。此外,已经提出了两种用于化学驱动自主分子机器的看似矛盾的机制:布朗棘轮和动力冲程机制。本观点解决了这两个问题,为催化驱动分子机械提供了易于理解和具有实验用途的设计原则。我们使用合成旋转电机和驱动蛋白行走器将动力学不对称性与 Curtin-Hammett 原理联系起来,作为说明性示例。我们的方法以布朗棘轮机制来描述这些分子马达,但指出化学门控和动力冲程是可调节的设计元素,可以影响动力学不对称性。我们解释了为什么这种动力学不对称的方法与以前的方法一致,并概述了动力冲程可以作为有用的设计元素的条件。最后,我们讨论了信息的作用,这是文献中使用的一个具有不同含义的概念。我们希望本观点能为广大化学家所理解,阐明在设计和合成分子机器及相关系统时可以有效控制的参数。它也可能有助于对生物分子机器进行更全面和跨学科的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e635/9650702/9d354ee527ff/ja2c08723_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验