Suppr超能文献

利用 Koopman 算子和迁移学习增强基于深度学习的三维湖泊水动力模拟器的可解释性和泛化能力:以苏黎世湖为例。

Enhancing interpretability and generalizability of deep learning-based emulator in three-dimensional lake hydrodynamics using Koopman operator and transfer learning: Demonstrated on the example of lake Zurich.

机构信息

College of Environmental Science and Engineering, Tongji University, 200092 Shanghai, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, 200092 Shanghai, China; Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Shanghai 200092, P.R. China.

College of Environmental Science and Engineering, Tongji University, 200092 Shanghai, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, 200092 Shanghai, China.

出版信息

Water Res. 2024 Feb 1;249:120996. doi: 10.1016/j.watres.2023.120996. Epub 2023 Dec 10.

Abstract

Three-dimensional lake hydrodynamic model is a powerful tool widely used to assess hydrological condition changes of lake. However, its computational cost becomes problematic when forecasting the state of large lakes or using high-resolution simulation in small-to-medium size lakes. One possible solution is to employ a data-driven emulator, such as a deep learning (DL) based emulator, to replace the original model for fast computing. However, existing DL-based emulators are often black-box and data-dependent models, causing poor interpretability and generalizability in practical applications. In this study, a data-driven emulator is established using deep neural network (DNN) to replace the original model for fast computing of three-dimensional lake hydrodynamics. Then, the Koopman operator and transfer learning (TL) are employed to enhance the interpretability and generalizability of the emulator. Finally, the generalizability of DL-based emulators is comprehensively analyzed through linear regression and correlation analysis. These methods are tested against an existing hydrodynamic model of Lake Zurich (Switzerland) whose data was provided by an open-source web-based platform called Meteolakes/Alplakes. According to the results, (1) The DLEDMD offers better interpretability than DNN because its Koopman operator reveals the linear structure behind the hydrodynamics; (2) The generalization of the DL-based emulators in three-dimensional lake hydrodynamics are influenced by the similarity between the training and testing data; (3) TL effectively improves the generalizability of the DL-based emulators.

摘要

三维湖泊水动力模型是一种广泛用于评估湖泊水情变化的强大工具。然而,当预测大型湖泊的状态或在中小湖泊中使用高分辨率模拟时,其计算成本就成了问题。一种可能的解决方案是采用数据驱动的仿真器,如基于深度学习(DL)的仿真器,来替代原始模型进行快速计算。然而,现有的基于 DL 的仿真器通常是黑盒和数据依赖的模型,这导致在实际应用中解释性和泛化性较差。在这项研究中,建立了一个基于深度神经网络(DNN)的数据驱动仿真器,用于快速计算三维湖泊水动力。然后,利用 Koopman 算子和迁移学习(TL)来增强仿真器的可解释性和泛化性。最后,通过线性回归和相关分析综合分析了基于 DL 的仿真器的泛化性。这些方法是针对瑞士苏黎世湖的现有水动力模型进行测试的,该模型的数据来自一个名为 Meteolakes/Alplakes 的开源基于网络的平台。结果表明:(1)DLEDMD 比 DNN 具有更好的可解释性,因为其 Koopman 算子揭示了水动力背后的线性结构;(2)基于 DL 的仿真器在三维湖泊水动力中的泛化性受到训练数据和测试数据之间相似性的影响;(3)TL 有效地提高了基于 DL 的仿真器的泛化性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验