Suppr超能文献

基于仿真器的 CISNET 结直肠癌模型的贝叶斯校准。

Emulator-Based Bayesian Calibration of the CISNET Colorectal Cancer Models.

机构信息

The Comparative Health Outcomes, Policy, and Economics (CHOICE) Institute, University of Washington, Seattle, WA, USA.

Institute for Technology Assessment, Massachusetts General Hospital, Boston, MA, USA.

出版信息

Med Decis Making. 2024 Jul;44(5):543-553. doi: 10.1177/0272989X241255618. Epub 2024 Jun 10.

Abstract

PURPOSE

To calibrate Cancer Intervention and Surveillance Modeling Network (CISNET)'s SimCRC, MISCAN-Colon, and CRC-SPIN simulation models of the natural history colorectal cancer (CRC) with an emulator-based Bayesian algorithm and internally validate the model-predicted outcomes to calibration targets.

METHODS

We used Latin hypercube sampling to sample up to 50,000 parameter sets for each CISNET-CRC model and generated the corresponding outputs. We trained multilayer perceptron artificial neural networks (ANNs) as emulators using the input and output samples for each CISNET-CRC model. We selected ANN structures with corresponding hyperparameters (i.e., number of hidden layers, nodes, activation functions, epochs, and optimizer) that minimize the predicted mean square error on the validation sample. We implemented the ANN emulators in a probabilistic programming language and calibrated the input parameters with Hamiltonian Monte Carlo-based algorithms to obtain the joint posterior distributions of the CISNET-CRC models' parameters. We internally validated each calibrated emulator by comparing the model-predicted posterior outputs against the calibration targets.

RESULTS

The optimal ANN for SimCRC had 4 hidden layers and 360 hidden nodes, MISCAN-Colon had 4 hidden layers and 114 hidden nodes, and CRC-SPIN had 1 hidden layer and 140 hidden nodes. The total time for training and calibrating the emulators was 7.3, 4.0, and 0.66 h for SimCRC, MISCAN-Colon, and CRC-SPIN, respectively. The mean of the model-predicted outputs fell within the 95% confidence intervals of the calibration targets in 98 of 110 for SimCRC, 65 of 93 for MISCAN, and 31 of 41 targets for CRC-SPIN.

CONCLUSIONS

Using ANN emulators is a practical solution to reduce the computational burden and complexity for Bayesian calibration of individual-level simulation models used for policy analysis, such as the CISNET CRC models. In this work, we present a step-by-step guide to constructing emulators for calibrating 3 realistic CRC individual-level models using a Bayesian approach.

HIGHLIGHTS

We use artificial neural networks (ANNs) to build emulators that surrogate complex individual-based models to reduce the computational burden in the Bayesian calibration process.ANNs showed good performance in emulating the CISNET-CRC microsimulation models, despite having many input parameters and outputs.Using ANN emulators is a practical solution to reduce the computational burden and complexity for Bayesian calibration of individual-level simulation models used for policy analysis.This work aims to support health decision scientists who want to quantify the uncertainty of calibrated parameters of computationally intensive simulation models under a Bayesian framework.

摘要

目的

利用基于仿真的贝叶斯算法对癌症干预和监测建模网络(CISNET)的 SimCRC、MISCAN-Colon 和 CRC-SPIN 结直肠癌(CRC)自然史仿真模型进行校准,并对模型预测结果进行内部验证,以符合校准目标。

方法

我们使用拉丁超立方抽样对每个 CISNET-CRC 模型最多抽取 50,000 个参数集,并生成相应的输出。我们使用多层感知机人工神经网络(ANN)作为仿真器,使用每个 CISNET-CRC 模型的输入和输出样本进行训练。我们选择具有相应超参数(即隐藏层、节点、激活函数、时期和优化器的数量)的 ANN 结构,这些超参数可以最小化验证样本上的预测均方误差。我们使用概率编程语言实现 ANN 仿真器,并使用基于 Hamiltonian Monte Carlo 的算法对输入参数进行校准,以获得 CISNET-CRC 模型参数的联合后验分布。我们通过将模型预测的后验输出与校准目标进行比较,对每个校准的仿真器进行内部验证。

结果

SimCRC 的最优 ANN 有 4 个隐藏层和 360 个隐藏节点,MISCAN-Colon 有 4 个隐藏层和 114 个隐藏节点,CRC-SPIN 有 1 个隐藏层和 140 个隐藏节点。训练和校准仿真器的总时间分别为 SimCRC 7.3、MISCAN-Colon 4.0 和 CRC-SPIN 0.66 小时。在 110 个 SimCRC、93 个 MISCAN 和 41 个 CRC-SPIN 的校准目标中,模型预测输出的平均值有 98 个落在 95%置信区间内,65 个落在 95%置信区间内,31 个落在 95%置信区间内。

结论

使用 ANN 仿真器是一种实用的解决方案,可以降低用于政策分析的个体水平仿真模型(如 CISNET CRC 模型)的贝叶斯校准的计算负担和复杂性。在这项工作中,我们提出了一种使用贝叶斯方法校准 3 个现实的 CRC 个体水平模型的仿真器的分步指南。

重点

我们使用人工神经网络(ANNs)来构建仿真器,以替代复杂的基于个体的模型,从而降低贝叶斯校准过程中的计算负担。

ANNs 尽管具有许多输入参数和输出,但在模拟 CISNET-CRC 微观仿真模型方面表现出良好的性能。

使用 ANN 仿真器是一种实用的解决方案,可以降低用于政策分析的个体水平仿真模型(如 CISNET CRC 模型)的贝叶斯校准的计算负担和复杂性。

这项工作旨在为希望在贝叶斯框架下量化计算密集型仿真模型校准参数不确定性的健康决策科学家提供支持。

相似文献

1
Emulator-Based Bayesian Calibration of the CISNET Colorectal Cancer Models.
Med Decis Making. 2024 Jul;44(5):543-553. doi: 10.1177/0272989X241255618. Epub 2024 Jun 10.
2
Emulator-based Bayesian calibration of the CISNET colorectal cancer models.
medRxiv. 2024 Feb 5:2023.02.27.23286525. doi: 10.1101/2023.02.27.23286525.
4
BayCANN: Streamlining Bayesian Calibration With Artificial Neural Network Metamodeling.
Front Physiol. 2021 May 25;12:662314. doi: 10.3389/fphys.2021.662314. eCollection 2021.
5
Evaluating Parameter Uncertainty in a Simulation Model of Cancer Using Emulators.
Med Decis Making. 2019 May;39(4):405-413. doi: 10.1177/0272989X19837631. Epub 2019 Jun 10.
7
Deep convolutional neural network and IoT technology for healthcare.
Digit Health. 2024 Jan 17;10:20552076231220123. doi: 10.1177/20552076231220123. eCollection 2024 Jan-Dec.
8
Statistical emulation of landslide-induced tsunamis at the Rockall Bank, NE Atlantic.
Proc Math Phys Eng Sci. 2017 Apr;473(2200):20170026. doi: 10.1098/rspa.2017.0026. Epub 2017 Apr 12.
9
Bayesian sensitivity analysis of a 1D vascular model with Gaussian process emulators.
Int J Numer Method Biomed Eng. 2017 Dec;33(12). doi: 10.1002/cnm.2882. Epub 2017 May 11.

引用本文的文献

1
A Scoping Review on Calibration Methods for Cancer Simulation Models.
Med Decis Making. 2025 Aug 11:272989X251353211. doi: 10.1177/0272989X251353211.
2
Comprehensive review of Bayesian network applications in gastrointestinal cancers.
World J Clin Oncol. 2025 Jun 24;16(6):104299. doi: 10.5306/wjco.v16.i6.104299.

本文引用的文献

1
Dynamics of Respiratory Infectious Diseases in Incarcerated and Free-Living Populations: A Simulation Modeling Study.
Med Decis Making. 2023 Jan;43(1):42-52. doi: 10.1177/0272989X221115364. Epub 2022 Jul 29.
2
Metamodeling for Policy Simulations with Multivariate Outcomes.
Med Decis Making. 2022 Oct;42(7):872-884. doi: 10.1177/0272989X221105079. Epub 2022 Jun 23.
3
Characterization and Valuation of the Uncertainty of Calibrated Parameters in Microsimulation Decision Models.
Front Physiol. 2022 May 9;13:780917. doi: 10.3389/fphys.2022.780917. eCollection 2022.
4
When Is Mass Prophylaxis Cost-Effective for Epidemic Control? A Comparison of Decision Approaches.
Med Decis Making. 2022 Nov;42(8):1052-1063. doi: 10.1177/0272989X221098409. Epub 2022 May 19.
6
MICROSIMULATION MODEL CALIBRATION USING INCREMENTAL MIXTURE APPROXIMATE BAYESIAN COMPUTATION.
Ann Appl Stat. 2019 Dec;13(4):2189-2212. doi: 10.1214/19-aoas1279. Epub 2019 Nov 28.
7
Personalization of Medical Treatment Decisions: Simplifying Complex Models while Maintaining Patient Health Outcomes.
Med Decis Making. 2022 May;42(4):450-460. doi: 10.1177/0272989X211037921. Epub 2021 Aug 20.
8
BayCANN: Streamlining Bayesian Calibration With Artificial Neural Network Metamodeling.
Front Physiol. 2021 May 25;12:662314. doi: 10.3389/fphys.2021.662314. eCollection 2021.
9
Choosing a Metamodel of a Simulation Model for Uncertainty Quantification.
Med Decis Making. 2022 Jan;42(1):28-42. doi: 10.1177/0272989X211016307. Epub 2021 Jun 8.
10
Colorectal Cancer Screening: An Updated Modeling Study for the US Preventive Services Task Force.
JAMA. 2021 May 18;325(19):1998-2011. doi: 10.1001/jama.2021.5746.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验