Suppr超能文献

基于磁共振成像数据的偏头痛先兆复杂度评分的机器学习预测方法。

Machine learning approach for Migraine Aura Complexity Score prediction based on magnetic resonance imaging data.

机构信息

Department of Information Technologies, Faculty of Technical Sciences Čačak, University of Kragujevac, 65 Svetog Save, Čačak, 32000, Serbia.

Science and Research Centre, University of Belgrade - School of Electrical Engineering, University of Belgrade, 73 Bulevar kralja Aleksandra, Belgrade, 11000, Serbia.

出版信息

J Headache Pain. 2023 Dec 18;24(1):169. doi: 10.1186/s10194-023-01704-z.

Abstract

BACKGROUND

Previous studies have developed the Migraine Aura Complexity Score (MACS) system. MACS shows great potential in studying the complexity of migraine with aura (MwA) pathophysiology especially when implemented in neuroimaging studies. The use of sophisticated machine learning (ML) algorithms, together with deep profiling of MwA, could bring new knowledge in this field. We aimed to test several ML algorithms to study the potential of structural cortical features for predicting the MACS and therefore gain a better insight into MwA pathophysiology.

METHODS

The data set used in this research consists of 340 MRI features collected from 40 MwA patients. Average MACS score was obtained for each subject. Feature selection for ML models was performed using several approaches, including a correlation test and a wrapper feature selection methodology. Regression was performed with the Support Vector Machine (SVM), Linear Regression, and Radial Basis Function network.

RESULTS

SVM achieved a 0.89 coefficient of determination score with a wrapper feature selection. The results suggest a set of cortical features, located mostly in the parietal and temporal lobes, that show changes in MwA patients depending on aura complexity.

CONCLUSIONS

The SVM algorithm demonstrated the best potential in average MACS prediction when using a wrapper feature selection methodology. The proposed method achieved promising results in determining MwA complexity, which can provide a basis for future MwA studies and the development of MwA diagnosis and treatment.

摘要

背景

先前的研究已经开发出偏头痛先兆复杂性评分(MACS)系统。MACS 系统在研究偏头痛先兆(MwA)病理生理学的复杂性方面具有很大的潜力,尤其是在神经影像学研究中实施时。使用复杂的机器学习(ML)算法,以及对 MwA 的深度分析,可能会为该领域带来新的知识。我们旨在测试几种 ML 算法,以研究皮质结构特征对预测 MACS 的潜力,从而更深入地了解 MwA 的病理生理学。

方法

本研究使用的数据集包含 40 名 MwA 患者的 340 个 MRI 特征。为每个受试者获得平均 MACS 评分。使用多种方法(包括相关测试和包装器特征选择方法)进行 ML 模型的特征选择。使用支持向量机(SVM)、线性回归和径向基函数网络进行回归。

结果

SVM 在使用包装器特征选择时达到了 0.89 的决定系数评分。结果表明,根据先兆复杂性,患者大脑皮质的一系列特征发生了变化,这些特征主要位于顶叶和颞叶。

结论

当使用包装器特征选择方法时,SVM 算法在平均 MACS 预测方面表现出了最佳潜力。该方法在确定 MwA 复杂性方面取得了有希望的结果,为未来的 MwA 研究以及 MwA 诊断和治疗的发展提供了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0485/10726649/23923750cc1d/10194_2023_1704_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验