Suppr超能文献

FamFac——一个用于心理学实验的名人面孔数据库。

FamFac - A Database of Famous Faces for Psychology Experiments.

作者信息

Monteiro Fábio, Rodrigues Paulo, Santos Isabel M, Bem-Haja Pedro, Rosa Pedro J

机构信息

Center for Research in Neuropsychology and Cognitive Behavioral Intervention (CINEICC), Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal. Universidade de Coimbra University of Coimbra Coimbra Portugal.

William James Center for Research, Department of Education and Psychology, University of Aveiro, Aveiro, Portugal. Universidade de Aveiro University of Aveiro Aveiro Portugal.

出版信息

Int J Psychol Res (Medellin). 2023 Oct 10;16(2):31-41. doi: 10.21500/20112084.6498. eCollection 2023 Jul-Dec.

Abstract

INTRODUCTION

High variation in the low-level proprieties of visual stimuli and varying degrees of familiarity with famous faces may have caused a bias in the results of investigations that tried to disentangle the processes involved in familiar and unfamiliar face processing (e.g., temporal differences in the detection of the first event-related potentials specialized in face processing may have been caused by different methods of controlling variance in the low-level proprieties of visual stimuli).

OBJECTIVE

To address these problems, we developed a freely available database of 183 famous faces whose low-level proprieties (brightness, size, resolution) have been homogenized and the level of familiarity established.

METHOD

The brightness of the stimuli was standardized by a custom-developed algorithm. The size and the resolution of the pictures were homogenized in Gimp. The familiarity level of the famous faces was established by a group of 48 Portuguese college students.

RESULTS

Our results suggest that the brightness of each image did not differ significantly from the mean brightness value of the stimuli set, confirming the standardizing ability of the algorithm. Forty-one famous faces were classified as highly familiar.

MAIN FINDINGS AND IMPLICATIONS

This study provides two important resources, as both the algorithm and the database are freely available for research purposes. The homogenization of the low-level features and the control of the level of familiarity of the famous faces included in our database should ensure that they do not elicit confounding effects such as the ones verified in past studies.

摘要

引言

视觉刺激的低层次属性存在高度差异,且对名人面孔的熟悉程度各不相同,这可能导致了在试图厘清熟悉面孔和陌生面孔加工过程的研究结果中出现偏差(例如,专门用于面孔加工的首个事件相关电位检测中的时间差异,可能是由控制视觉刺激低层次属性方差的不同方法导致的)。

目的

为解决这些问题,我们开发了一个包含183张名人面孔的免费数据库,其低层次属性(亮度、大小、分辨率)已被同质化,且熟悉程度已确定。

方法

通过自定义算法对刺激的亮度进行标准化。图片的大小和分辨率在Gimp中进行同质化处理。名人面孔的熟悉程度由48名葡萄牙大学生组成的小组确定。

结果

我们的结果表明,每张图像的亮度与刺激集的平均亮度值没有显著差异,证实了该算法的标准化能力。41张名人面孔被归类为高度熟悉。

主要发现及意义

本研究提供了两项重要资源,因为算法和数据库均可免费用于研究目的。我们数据库中名人面孔的低层次特征同质化以及熟悉程度控制,应确保它们不会引发诸如过去研究中所验证的那种混杂效应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd68/10723752/26dd8f9477db/2011-2084-ijpr-16-02-31-gf1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验