Suppr超能文献

基于人工智能的数据库,用于预测眼部疾病中蛋白质结构及其改变。

Artificial Intelligence-based database for prediction of protein structure and their alterations in ocular diseases.

机构信息

Joint Shantou International Eye Centre of Shantou University and The Chinese University of Hong Kong, North Dongxia Road (Guangxia New Town), Shantou, Guangdong 515041, China.

Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, China.

出版信息

Database (Oxford). 2023 Dec 18;2023. doi: 10.1093/database/baad083.

Abstract

The aim of the study is to establish an online database for predicting protein structures altered in ocular diseases by Alphafold2 and RoseTTAFold algorithms. Totally, 726 genes of multiple ocular diseases were collected for protein structure prediction. Both Alphafold2 and RoseTTAFold algorithms were built locally using the open-source codebases. A dataset with 48 protein structures from Protein Data Bank (PDB) was adopted for algorithm set-up validation. A website was built to match ocular genes with the corresponding predicted tertiary protein structures for each amino acid sequence. The predicted local distance difference test-Cα (pLDDT) and template modeling (TM) scores of the validation protein structure and the selected ocular genes were evaluated. Molecular dynamics and molecular docking simulations were performed to demonstrate the applications of the predicted structures. For the validation dataset, 70.8% of the predicted protein structures showed pLDDT greater than 90. Compared to the PDB structures, 100% of the AlphaFold2-predicted structures and 97.9% of the RoseTTAFold-predicted structure showed TM score greater than 0.5. Totally, 1329 amino acid sequences of 430 ocular disease-related genes have been predicted, of which 75.9% showed pLDDT greater than 70 for the wildtype sequences and 76.1% for the variant sequences. Small molecule docking and molecular dynamics simulations revealed that the predicted protein structures with higher confidence scores showed similar molecular characteristics with the structures from PDB. We have developed an ocular protein structure database (EyeProdb) for ocular disease, which is released for the public and will facilitate the biological investigations and structure-based drug development for ocular diseases. Database URL:  http://eyeprodb.jsiec.org.

摘要

本研究旨在建立一个由 Alphafold2 和 RoseTTAFold 算法预测眼部疾病中改变的蛋白质结构的在线数据库。总共收集了 726 个多种眼部疾病的基因进行蛋白质结构预测。使用开源代码库在本地构建了 Alphafold2 和 RoseTTAFold 算法。采用来自蛋白质数据库(PDB)的 48 个蛋白质结构数据集进行算法设置验证。建立了一个网站,将眼部基因与每个氨基酸序列对应的预测三级蛋白质结构相匹配。评估了验证蛋白质结构和所选眼部基因的预测局部距离差异测试-Cα(pLDDT)和模板建模(TM)分数。进行分子动力学和分子对接模拟以展示预测结构的应用。对于验证数据集,70.8%的预测蛋白质结构的 pLDDT 值大于 90。与 PDB 结构相比,100%的 AlphaFold2 预测结构和 97.9%的 RoseTTAFold 预测结构的 TM 分数大于 0.5。总共预测了 430 个与眼部疾病相关基因的 1329 个氨基酸序列,其中 75.9%的野生型序列和 76.1%的变异序列的 pLDDT 值大于 70。小分子对接和分子动力学模拟表明,置信度得分较高的预测蛋白质结构与 PDB 结构具有相似的分子特征。我们已经开发了一个眼部蛋白质结构数据库(EyeProdb),用于眼部疾病,该数据库已向公众发布,将有助于眼部疾病的生物研究和基于结构的药物开发。数据库网址:http://eyeprodb.jsiec.org。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/091e/10727695/b83291cf20be/baad083f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验