Suppr超能文献

人工智能在融合蛋白三维结构预测中的应用:综述与展望。

Artificial intelligence in fusion protein three-dimensional structure prediction: Review and perspective.

机构信息

Department of Bioinformatics and Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, USA.

出版信息

Clin Transl Med. 2024 Aug;14(8):e1789. doi: 10.1002/ctm2.1789.

Abstract

Recent advancements in artificial intelligence (AI) have accelerated the prediction of unknown protein structures. However, accurately predicting the three-dimensional (3D) structures of fusion proteins remains a difficult task because the current AI-based protein structure predictions are focused on the WT proteins rather than on the newly fused proteins in nature. Following the central dogma of biology, fusion proteins are translated from fusion transcripts, which are made by transcribing the fusion genes between two different loci through the chromosomal rearrangements in cancer. Accurately predicting the 3D structures of fusion proteins is important for understanding the functional roles and mechanisms of action of new chimeric proteins. However, predicting their 3D structure using a template-based model is challenging because known template structures are often unavailable in databases. Deep learning (DL) models that utilize multi-level protein information have revolutionized the prediction of protein 3D structures. In this review paper, we highlighted the latest advancements and ongoing challenges in predicting the 3D structure of fusion proteins using DL models. We aim to explore both the advantages and challenges of employing AlphaFold2, RoseTTAFold, tr-Rosetta and D-I-TASSER for modelling the 3D structures. HIGHLIGHTS: This review provides the overall pipeline and landscape of the prediction of the 3D structure of fusion protein. This review provides the factors that should be considered in predicting the 3D structures of fusion proteins using AI approaches in each step. This review highlights the latest advancements and ongoing challenges in predicting the 3D structure of fusion proteins using deep learning models. This review explores the advantages and challenges of employing AlphaFold2, RoseTTAFold, tr-Rosetta, and D-I-TASSER to model 3D structures.

摘要

近年来,人工智能(AI)的进步加速了未知蛋白质结构的预测。然而,准确预测融合蛋白的三维(3D)结构仍然是一项艰巨的任务,因为当前基于 AI 的蛋白质结构预测侧重于 WT 蛋白,而不是自然界中新型融合蛋白。根据生物学的中心法则,融合蛋白是由融合转录本翻译而来的,这些转录本是通过染色体重排在癌症中从两个不同基因座之间转录融合基因产生的。准确预测融合蛋白的 3D 结构对于理解新嵌合蛋白的功能作用和作用机制非常重要。然而,使用基于模板的模型预测其 3D 结构具有挑战性,因为在数据库中通常找不到已知的模板结构。利用多层次蛋白质信息的深度学习(DL)模型彻底改变了蛋白质 3D 结构的预测。在这篇综述论文中,我们强调了使用 DL 模型预测融合蛋白 3D 结构的最新进展和持续挑战。我们旨在探讨使用 AlphaFold2、RoseTTAFold、tr-Rosetta 和 D-I-TASSER 建模 3D 结构的优势和挑战。要点:本文综述了融合蛋白 3D 结构预测的整体流程和现状。本文综述了在使用 AI 方法预测融合蛋白 3D 结构的每个步骤中应考虑的因素。本文强调了使用深度学习模型预测融合蛋白 3D 结构的最新进展和持续挑战。本文探讨了使用 AlphaFold2、RoseTTAFold、tr-Rosetta 和 D-I-TASSER 进行 3D 结构建模的优势和挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e32/11294035/ad999e5b2107/CTM2-14-e1789-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验