文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

AlphaFold2 模型在虚拟药物筛选中的可靠性:关注选定的 A 类 GPCR 。

Reliability of AlphaFold2 Models in Virtual Drug Screening: A Focus on Selected Class A GPCRs.

机构信息

Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia.

出版信息

Int J Mol Sci. 2024 Sep 21;25(18):10139. doi: 10.3390/ijms251810139.


DOI:10.3390/ijms251810139
PMID:39337622
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11432040/
Abstract

Protein three-dimensional (3D) structure prediction is one of the most challenging issues in the field of computational biochemistry, which has overwhelmed scientists for almost half a century. A significant breakthrough in structural biology has been established by developing the artificial intelligence (AI) system AlphaFold2 (AF2). The AF2 system provides a state-of-the-art prediction of protein structures from nearly all known protein sequences with high accuracy. This study examined the reliability of AF2 models compared to the experimental structures in drug discovery, focusing on one of the most common protein drug-targeted classes known as G protein-coupled receptors (GPCRs) class A. A total of 32 representative protein targets were selected, including experimental structures of X-ray crystallographic and Cryo-EM structures and their corresponding AF2 models. The quality of AF2 models was assessed using different structure validation tools, including the pLDDT score, RMSD value, MolProbity score, percentage of Ramachandran favored, QMEAN Z-score, and QMEANDisCo Global. The molecular docking was performed using the Genetic Optimization for Ligand Docking (GOLD) software. The AF2 models' reliability in virtual drug screening was determined by their ability to predict the ligand binding poses closest to the native binding pose by assessing the Root Mean Square Deviation (RMSD) metric and docking scoring function. The quality of the docking and scoring function was evaluated using the enrichment factor (EF). Furthermore, the capability of using AF2 models in molecular docking to identify hits with key protein-ligand interactions was analyzed. The posing power results showed that the AF2 models successfully predicted ligand binding poses (RMSD < 2 Å). However, they exhibited lower screening power, with average EF values of 2.24, 2.42, and 1.82 for X-ray, Cryo-EM, and AF2 structures, respectively. Moreover, our study revealed that molecular docking using AF2 models can identify competitive inhibitors. In conclusion, this study found that AF2 models provided docking results comparable to experimental structures, particularly for certain GPCR targets, and could potentially significantly impact drug discovery.

摘要

蛋白质三维(3D)结构预测是计算生物化学领域最具挑战性的问题之一,近半个世纪以来一直困扰着科学家。人工智能(AI)系统 AlphaFold2(AF2)的发展为结构生物学带来了重大突破。AF2 系统能够高精度地从几乎所有已知的蛋白质序列中预测蛋白质结构,达到了目前的技术水平。本研究在药物发现中考察了 AF2 模型与实验结构的可靠性,重点研究了最常见的蛋白质药物靶标之一 G 蛋白偶联受体(GPCR)A 类。共选择了 32 个代表性的蛋白质靶标,包括 X 射线晶体学和 Cryo-EM 结构的实验结构及其相应的 AF2 模型。使用不同的结构验证工具评估 AF2 模型的质量,包括 pLDDT 评分、RMSD 值、MolProbity 评分、Ramachandran 优势百分比、QMEAN Z 分数和 QMEANDisCo Global。使用遗传优化配体对接(GOLD)软件进行分子对接。通过评估 Root Mean Square Deviation(RMSD)度量和对接评分函数,考察 AF2 模型预测与天然结合构象最接近的配体结合构象的能力,确定其在虚拟药物筛选中的可靠性。通过使用富集因子(EF)评估对接和评分函数的质量。此外,还分析了使用 AF2 模型进行分子对接识别具有关键蛋白-配体相互作用的命中的能力。构象能力结果表明,AF2 模型成功预测了配体结合构象(RMSD<2 Å)。然而,它们的筛选能力较低,X 射线、Cryo-EM 和 AF2 结构的平均 EF 值分别为 2.24、2.42 和 1.82。此外,我们的研究表明,使用 AF2 模型进行分子对接可以识别竞争性抑制剂。总之,本研究发现,AF2 模型提供的对接结果与实验结构相当,特别是对于某些 GPCR 靶标,可能会对药物发现产生重大影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51d5/11432040/675a4ba81171/ijms-25-10139-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51d5/11432040/fc873b12c9f4/ijms-25-10139-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51d5/11432040/1e3fcc537dfa/ijms-25-10139-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51d5/11432040/170001abee37/ijms-25-10139-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51d5/11432040/cb2776cd4d03/ijms-25-10139-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51d5/11432040/116468b99e7a/ijms-25-10139-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51d5/11432040/52f07c31270b/ijms-25-10139-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51d5/11432040/675a4ba81171/ijms-25-10139-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51d5/11432040/fc873b12c9f4/ijms-25-10139-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51d5/11432040/1e3fcc537dfa/ijms-25-10139-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51d5/11432040/170001abee37/ijms-25-10139-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51d5/11432040/cb2776cd4d03/ijms-25-10139-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51d5/11432040/116468b99e7a/ijms-25-10139-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51d5/11432040/52f07c31270b/ijms-25-10139-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51d5/11432040/675a4ba81171/ijms-25-10139-g007.jpg

相似文献

[1]
Reliability of AlphaFold2 Models in Virtual Drug Screening: A Focus on Selected Class A GPCRs.

Int J Mol Sci. 2024-9-21

[2]
Benchmarking GPCR homology model template selection in combination with de novo loop generation.

J Comput Aided Mol Des. 2020-10

[3]
How accurately can one predict drug binding modes using AlphaFold models?

Elife. 2023-12-22

[4]
AlphaFold2 structures guide prospective ligand discovery.

Science. 2024-6-21

[5]
Virtual Screening of Human Class-A GPCRs Using Ligand Profiles Built on Multiple Ligand-Receptor Interactions.

J Mol Biol. 2020-8-7

[6]
Benchmarking Refined and Unrefined AlphaFold2 Structures for Hit Discovery.

J Chem Inf Model. 2023-3-27

[7]
Evaluation of AlphaFold2 Structures for Hit Identification across Multiple Scenarios.

J Chem Inf Model. 2024-5-13

[8]
Reliability of Docking-Based Virtual Screening for GPCR Ligands with Homology Modeled Structures: A Case Study of the Angiotensin II Type I Receptor.

ACS Chem Neurosci. 2018-10-17

[9]
Towards predictive docking at aminergic G-protein coupled receptors.

J Mol Model. 2015-11

[10]
Function-specific virtual screening for GPCR ligands using a combined scoring method.

Sci Rep. 2016-6-24

引用本文的文献

[1]
DNA methylation regulates TREM1 expression to modulate immune responses and drive progression in colorectal neuroendocrine neoplasm as a potential therapeutic target.

Discov Oncol. 2025-8-25

[2]
Investigations on genomic, topological and structural properties of diguanylate cyclases involved in biofilm signalling using techniques: Promising drug targets in combating cholera.

Curr Res Struct Biol. 2025-4-9

[3]
Molecular Modelling in Bioactive Peptide Discovery and Characterisation.

Biomolecules. 2025-4-3

[4]
Deep learning in GPCR drug discovery: benchmarking the path to accurate peptide binding.

Brief Bioinform. 2025-3-4

[5]
Comprehensive biochemical, molecular and structural characterization of subtilisin with fibrinolytic potential in bioprocessing.

Bioresour Bioprocess. 2025-3-21

[6]
Molecular Evolution of the () Genes in Human Parainfluenza Virus Type 2.

Microorganisms. 2025-2-12

[7]
Orphan GPCRs in Neurodegenerative Disorders: Integrating Structural Biology and Drug Discovery Approaches.

Curr Issues Mol Biol. 2024-10-19

本文引用的文献

[1]
Accurate structure prediction of biomolecular interactions with AlphaFold 3.

Nature. 2024-6

[2]
Comparative Structure-Based Virtual Screening Utilizing Optimized AlphaFold Model Identifies Selective HDAC11 Inhibitor.

Int J Mol Sci. 2024-1-22

[3]
Computational Workflow for Refining AlphaFold Models in Drug Design Using Kinetic and Thermodynamic Binding Calculations: A Case Study for the Unresolved Inactive Human Adenosine A Receptor.

J Phys Chem B. 2024-2-1

[4]
How accurately can one predict drug binding modes using AlphaFold models?

Elife. 2023-12-22

[5]
AlphaFold predictions are valuable hypotheses and accelerate but do not replace experimental structure determination.

Nat Methods. 2024-1

[6]
AlphaFold Protein Structure Database in 2024: providing structure coverage for over 214 million protein sequences.

Nucleic Acids Res. 2024-1-5

[7]
The ChEMBL Database in 2023: a drug discovery platform spanning multiple bioactivity data types and time periods.

Nucleic Acids Res. 2024-1-5

[8]
Before and after AlphaFold2: An overview of protein structure prediction.

Front Bioinform. 2023-2-28

[9]
AlphaFold, allosteric, and orthosteric drug discovery: Ways forward.

Drug Discov Today. 2023-6

[10]
Benchmarking Refined and Unrefined AlphaFold2 Structures for Hit Discovery.

J Chem Inf Model. 2023-3-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索