Suppr超能文献

用于多学科设计的非近视多点多保真度贝叶斯框架

Non-myopic multipoint multifidelity Bayesian framework for multidisciplinary design.

作者信息

Di Fiore Francesco, Mainini Laura

机构信息

Departement of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129, Turin, Italy.

Department of Aeronautics, Imperial College London, London, SW7 2AZ, UK.

出版信息

Sci Rep. 2023 Dec 18;13(1):22531. doi: 10.1038/s41598-023-48757-3.

Abstract

The adoption of high-fidelity models in multidisciplinary design optimization (MDO) permits to enhance the identification of superior design configurations, but would prohibitively rise the demand for computational resources and time. Multifidelity Bayesian Optimization (MFBO) efficiently combines information from multiple models at different levels of fidelity to accelerate the MDO procedure. State-of-the-art MFBO methods currently meet two major limitations: (i) the sequential adaptive sampling precludes parallel computations of high-fidelity models, and (ii) the search scheme measures the utility of new design evaluations only at the immediate next iteration. This paper proposes a Non-Myopic Multipoint Multifidelity Bayesian Optimization (NM3-BO) algorithm to sensitively accelerate MDO overcoming the limitations of standard methods. NM3-BO selects a batch of promising design configurations to be evaluated in parallel, and quantifies the expected long-term improvement of these designs at future steps of the optimization. Our learning scheme leverages an original acquisition function based on the combination of a two-step lookahead policy and a local penalization strategy to measure the future utility achieved evaluating multiple design configurations simultaneously. We observe that the proposed framework permits to sensitively accelerate the MDO of a space vehicle and outperforms popular algorithms.

摘要

在多学科设计优化(MDO)中采用高保真模型有助于提高对卓越设计配置的识别,但会大幅增加对计算资源和时间的需求。多保真贝叶斯优化(MFBO)有效地结合了来自不同保真度水平的多个模型的信息,以加速MDO过程。当前最先进的MFBO方法存在两个主要局限性:(i)顺序自适应采样排除了高保真模型的并行计算,以及(ii)搜索方案仅在紧接着的下一次迭代中衡量新设计评估的效用。本文提出了一种非近视多点多保真贝叶斯优化(NM3-BO)算法,以灵敏地加速MDO,克服标准方法的局限性。NM3-BO选择一批有前景的设计配置进行并行评估,并量化这些设计在优化的未来步骤中的预期长期改进。我们的学习方案利用了一种基于两步前瞻策略和局部惩罚策略相结合的原始采集函数,来衡量同时评估多个设计配置所实现的未来效用。我们观察到,所提出的框架能够灵敏地加速航天器的MDO,并且优于流行算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ed9/10728184/41aaceae217f/41598_2023_48757_Figa_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验