Tran Anh, Tranchida Julien, Wildey Tim, Thompson Aidan P
Optimization and Uncertainty Quantification, Center for Computing Research, Sandia National Laboratories, Albuquerque, New Mexico 87123, USA.
Computational Multiscale, Center for Computing Research, Sandia National Laboratories, Albuquerque, New Mexico 87123, USA.
J Chem Phys. 2020 Aug 21;153(7):074705. doi: 10.1063/5.0015672.
We present a scale-bridging approach based on a multi-fidelity (MF) machine-learning (ML) framework leveraging Gaussian processes (GP) to fuse atomistic computational model predictions across multiple levels of fidelity. Through the posterior variance of the MFGP, our framework naturally enables uncertainty quantification, providing estimates of confidence in the predictions. We used density functional theory as high-fidelity prediction, while a ML interatomic potential is used as low-fidelity prediction. Practical materials' design efficiency is demonstrated by reproducing the ternary composition dependence of a quantity of interest (bulk modulus) across the full aluminum-niobium-titanium ternary random alloy composition space. The MFGP is then coupled to a Bayesian optimization procedure, and the computational efficiency of this approach is demonstrated by performing an on-the-fly search for the global optimum of bulk modulus in the ternary composition space. The framework presented in this manuscript is the first application of MFGP to atomistic materials simulations fusing predictions between density functional theory and classical interatomic potential calculations.
我们提出了一种基于多保真度(MF)机器学习(ML)框架的尺度桥接方法,该框架利用高斯过程(GP)来融合多个保真度水平上的原子计算模型预测。通过多保真度高斯过程(MFGP)的后验方差,我们的框架自然地实现了不确定性量化,提供了对预测的置信度估计。我们使用密度泛函理论作为高保真预测,而将机器学习原子间势用作低保真预测。通过在整个铝 - 铌 - 钛三元随机合金成分空间中再现感兴趣量(体模量)的三元成分依赖性,证明了实际材料设计效率。然后将MFGP与贝叶斯优化过程相结合,并通过在三元成分空间中实时搜索体模量的全局最优值,证明了该方法的计算效率。本手稿中提出的框架是MFGP在融合密度泛函理论和经典原子间势计算的预测的原子材料模拟中的首次应用。