Suppr超能文献

用于材料设计的具有不确定性量化和贝叶斯优化的多保真机器学习:在三元随机合金中的应用。

Multi-fidelity machine-learning with uncertainty quantification and Bayesian optimization for materials design: Application to ternary random alloys.

作者信息

Tran Anh, Tranchida Julien, Wildey Tim, Thompson Aidan P

机构信息

Optimization and Uncertainty Quantification, Center for Computing Research, Sandia National Laboratories, Albuquerque, New Mexico 87123, USA.

Computational Multiscale, Center for Computing Research, Sandia National Laboratories, Albuquerque, New Mexico 87123, USA.

出版信息

J Chem Phys. 2020 Aug 21;153(7):074705. doi: 10.1063/5.0015672.

Abstract

We present a scale-bridging approach based on a multi-fidelity (MF) machine-learning (ML) framework leveraging Gaussian processes (GP) to fuse atomistic computational model predictions across multiple levels of fidelity. Through the posterior variance of the MFGP, our framework naturally enables uncertainty quantification, providing estimates of confidence in the predictions. We used density functional theory as high-fidelity prediction, while a ML interatomic potential is used as low-fidelity prediction. Practical materials' design efficiency is demonstrated by reproducing the ternary composition dependence of a quantity of interest (bulk modulus) across the full aluminum-niobium-titanium ternary random alloy composition space. The MFGP is then coupled to a Bayesian optimization procedure, and the computational efficiency of this approach is demonstrated by performing an on-the-fly search for the global optimum of bulk modulus in the ternary composition space. The framework presented in this manuscript is the first application of MFGP to atomistic materials simulations fusing predictions between density functional theory and classical interatomic potential calculations.

摘要

我们提出了一种基于多保真度(MF)机器学习(ML)框架的尺度桥接方法,该框架利用高斯过程(GP)来融合多个保真度水平上的原子计算模型预测。通过多保真度高斯过程(MFGP)的后验方差,我们的框架自然地实现了不确定性量化,提供了对预测的置信度估计。我们使用密度泛函理论作为高保真预测,而将机器学习原子间势用作低保真预测。通过在整个铝 - 铌 - 钛三元随机合金成分空间中再现感兴趣量(体模量)的三元成分依赖性,证明了实际材料设计效率。然后将MFGP与贝叶斯优化过程相结合,并通过在三元成分空间中实时搜索体模量的全局最优值,证明了该方法的计算效率。本手稿中提出的框架是MFGP在融合密度泛函理论和经典原子间势计算的预测的原子材料模拟中的首次应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验