Suppr超能文献

多变量随机效应模型下荟萃分析中组间协方差矩阵的多步估计量。

Multistep estimators of the between-study covariance matrix under the multivariate random-effects model for meta-analysis.

机构信息

Statistical Innovation, AstraZeneca, Cambridge, UK.

Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands.

出版信息

Stat Med. 2024 Feb 20;43(4):756-773. doi: 10.1002/sim.9985. Epub 2023 Dec 18.

Abstract

A wide variety of methods are available to estimate the between-study variance under the univariate random-effects model for meta-analysis. Some, but not all, of these estimators have been extended so that they can be used in the multivariate setting. We begin by extending the univariate generalised method of moments, which immediately provides a wider class of multivariate methods than was previously available. However, our main proposal is to use this new type of estimator to derive multivariate multistep estimators of the between-study covariance matrix. We then use the connection between the univariate multistep and Paule-Mandel estimators to motivate taking the limit, where the number of steps tends toward infinity. We illustrate our methodology using two contrasting examples and investigate its properties in a simulation study. We conclude that the proposed methodology is a fully viable alternative to existing estimation methods, is well suited to sensitivity analyses that explore the use of alternative estimators, and should be used instead of the existing DerSimonian and Laird-type moments based estimator in application areas where data are expected to be heterogeneous. However, multistep estimators do not seem to outperform the existing estimators when the data are more homogeneous. Advantages of the new multivariate multistep estimator include its semi-parametric nature and that it is computationally feasible in high dimensions. Our proposed estimation methods are also applicable for multivariate random-effects meta-regression, where study-level covariates are included in the model.

摘要

有多种方法可用于估计元分析中单变量随机效应模型的组间方差。其中一些(但不是全部)估计量已被扩展,以便可用于多变量情况。我们首先扩展单变量广义矩方法,这立即提供了比以前可用的更广泛的多变量方法类。然而,我们的主要建议是使用这种新类型的估计器来推导出组间协方差矩阵的多变量多步估计器。然后,我们利用单变量多步和 Paule-Mandel 估计器之间的联系来激发极限,其中步骤数趋于无穷大。我们使用两个对比示例来说明我们的方法,并在模拟研究中研究其性质。我们得出结论,所提出的方法是现有估计方法的一种完全可行的替代方法,非常适合探索使用替代估计器的敏感性分析,并且应该在预期数据异质性的应用领域中替代现有的 DerSimonian 和 Laird 型矩基于估计器。然而,当数据更同质时,多步估计器似乎并不优于现有估计器。新的多变量多步估计器的优点包括其半参数性质和在高维数下的计算可行性。我们提出的估计方法也适用于包括模型中研究水平协变量的多变量随机效应元回归。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验