Chen Han, Manning Alisa K, Dupuis Josée
Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA.
Biometrics. 2012 Dec;68(4):1278-84. doi: 10.1111/j.1541-0420.2012.01761.x. Epub 2012 May 2.
Meta-analysis is a powerful approach to combine evidence from multiple studies to make inference about one or more parameters of interest, such as regression coefficients. The validity of the fixed effect model meta-analysis depends on the underlying assumption that all studies in the meta-analysis share the same effect size. In the presence of heterogeneity, the fixed effect model incorrectly ignores the between-study variance and may yield false positive results. The random effect model takes into account both within-study and between-study variances. It is more conservative than the fixed effect model and should be favored in the presence of heterogeneity. In this paper, we develop a noniterative method of moments estimator for the between-study covariance matrix in the random effect model multivariate meta-analysis. To our knowledge, it is the first such method of moments estimator in the matrix form. We show that our estimator is a multivariate extension of DerSimonian and Laird's univariate method of moments estimator, and it is invariant to linear transformations. In the simulation study, our method performs well when compared to existing random effect model multivariate meta-analysis approaches. We also apply our method in the analysis of a real data example.
元分析是一种强大的方法,可将来自多项研究的证据结合起来,以推断一个或多个感兴趣的参数,如回归系数。固定效应模型元分析的有效性取决于一个基本假设,即元分析中的所有研究都具有相同的效应大小。在存在异质性的情况下,固定效应模型会错误地忽略研究间的方差,可能会产生假阳性结果。随机效应模型同时考虑了研究内方差和研究间方差。它比固定效应模型更保守,在存在异质性的情况下应优先使用。在本文中,我们为随机效应模型多变量元分析中的研究间协方差矩阵开发了一种非迭代矩估计方法。据我们所知,这是第一种以矩阵形式出现的此类矩估计方法。我们表明,我们的估计器是DerSimonian和Laird单变量矩估计方法的多变量扩展,并且它在线性变换下是不变的。在模拟研究中,与现有的随机效应模型多变量元分析方法相比,我们的方法表现良好。我们还将我们的方法应用于一个实际数据示例的分析。