Suppr超能文献

配体介导热力学增强在纳米和宏观尺度的蛋白质复合物。

Ligand-Mediated Mechanical Enhancement in Protein Complexes at Nano- and Macro-Scale.

机构信息

Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, United States.

Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States.

出版信息

ACS Appl Mater Interfaces. 2024 Jan 10;16(1):272-280. doi: 10.1021/acsami.3c14653. Epub 2023 Dec 18.

Abstract

Protein self-assembly plays a vital role in a myriad of biological functions and in the construction of biomaterials. Although the physical association underlying these assemblies offers high specificity, the advantage often compromises the overall durability of protein complexes. To address this challenge, we propose a novel strategy that reinforces the molecular self-assembly of protein complexes mediated by their ligand. Known for their robust noncovalent interactions with biotin, streptavidin (SAv) tetramers are examined to understand how the ligand influences the mechanical strength of protein complexes at the nanoscale and macroscale, employing atomic force microscopy-based single-molecule force spectroscopy, rheology, and bioerosion analysis. Our study reveals that biotin binding enhances the mechanical strength of individual SAv tetramers at the nanoscale. This enhancement translates into improved shear elasticity and reduced bioerosion rates when SAv tetramers are utilized as cross-linking junctions within hydrogel. This approach, which enhances the mechanical strength of protein-based materials without compromising specificity, is expected to open new avenues for advanced biotechnological applications, including self-assembled, robust biomimetic scaffolds and soft robotics.

摘要

蛋白质自组装在许多生物功能和生物材料的构建中起着至关重要的作用。尽管这些组装物的物理关联提供了高度的特异性,但这种优势往往会影响蛋白质复合物的整体耐久性。为了解决这一挑战,我们提出了一种新的策略,通过其配体来增强蛋白质复合物的分子自组装。由于其与生物素具有强大的非共价相互作用,我们研究了链霉亲和素(SAv)四聚体,以了解配体如何在纳米和宏观尺度上影响蛋白质复合物的机械强度,采用原子力显微镜的单分子力谱学、流变学和生物侵蚀分析。我们的研究表明,生物素结合增强了单个 SAv 四聚体在纳米尺度上的机械强度。这种增强转化为在水凝胶中用作交联连接点时,提高了剪切弹性和降低了生物侵蚀率。这种方法在不影响特异性的情况下增强了基于蛋白质的材料的机械强度,有望为先进的生物技术应用开辟新途径,包括自组装的、坚固的仿生支架和软机器人。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验