Suppr超能文献

通过光子力显微镜监测配体-受体相互作用。

Monitoring ligand-receptor interactions by photonic force microscopy.

机构信息

M E Müller Institute for Structural Biology, Biozentrum, University of Basel, Basel, Switzerland.

出版信息

Nanotechnology. 2010 Jun 25;21(25):255102. doi: 10.1088/0957-4484/21/25/255102. Epub 2010 Jun 2.

Abstract

We introduce a method for the acquisition of single molecule force measurements of ligand-receptor interactions using the photonic force microscope (PFM). Biotin-functionalized beads, manipulated with an optical trap, and a streptavidin-functionalized coverslip were used to measure the effect of different pulling forces on the lifetime of individual streptavidin-biotin complexes. By optimizing the design of the optical trap and selection of the appropriate bead size, pulling forces in excess of 50 pN were achieved. Based on the amplitude of three-dimensional (3D) thermal position fluctuations of the attached bead, we were able to select for a bead-coverslip interaction that was mediated by a single streptavidin-biotin complex. Moreover, the developed experimental system was greatly accelerated by automation of data acquisition and analysis. In force-dependent kinetic measurements carried out between streptavidin and biotin, we observed that the streptavidin-biotin complex exhibited properties of a catch bond, with the lifetime increasing tenfold when the pulling force increased from 10 to 20 pN. We also show that silica beads were more appropriate than polystyrene beads for the force measurements, as tethers, longer than 200 nm, could be extracted from polystyrene beads.

摘要

我们介绍了一种使用光子力显微镜(PFM)获取配体-受体相互作用的单分子力测量的方法。使用带有光学陷阱的生物素化珠和链霉亲和素功能化盖玻片来测量不同拉力对单个链霉亲和素-生物素复合物寿命的影响。通过优化光学陷阱的设计和选择适当的珠大小,可以实现超过 50 pN 的拉力。基于附着珠的三维(3D)热位置波动的幅度,我们能够选择由单个链霉亲和素-生物素复合物介导的珠-盖玻片相互作用。此外,通过数据采集和分析的自动化,开发的实验系统得到了极大的加速。在进行的链霉亲和素和生物素之间的力依赖性动力学测量中,我们观察到链霉亲和素-生物素复合物表现出捕获键的特性,当拉力从 10 pN 增加到 20 pN 时,复合物的寿命增加了十倍。我们还表明,与聚苯乙烯珠相比,二氧化硅珠更适合用于力测量,因为可以从聚苯乙烯珠中提取出长于 200nm 的系绳。

相似文献

1
Monitoring ligand-receptor interactions by photonic force microscopy.通过光子力显微镜监测配体-受体相互作用。
Nanotechnology. 2010 Jun 25;21(25):255102. doi: 10.1088/0957-4484/21/25/255102. Epub 2010 Jun 2.
3
Force-clamp measurements of receptor-ligand interactions.受体-配体相互作用的力钳测量
Methods Mol Biol. 2011;736:331-53. doi: 10.1007/978-1-61779-105-5_20.
9
Switchable reinforced streptavidin.可切换增强型链霉亲和素。
Nanoscale. 2020 Mar 28;12(12):6803-6809. doi: 10.1039/d0nr00265h. Epub 2020 Mar 17.

引用本文的文献

7
Optical trapping microrheology in cultured human cells.培养的人类细胞中的光镊微流变学
Eur Phys J E Soft Matter. 2012 Jul;35(7):63. doi: 10.1140/epje/i2012-12063-4. Epub 2012 Jul 23.

本文引用的文献

1
Scanning-force microscope based on an optical trap.基于光阱的扫描力显微镜。
Opt Lett. 1993 Oct 1;18(19):1678-80. doi: 10.1364/ol.18.001678.
5
Anisotropic memory effects in confined colloidal diffusion.受限胶体扩散中的各向异性记忆效应。
Phys Rev Lett. 2008 Jun 20;100(24):240604. doi: 10.1103/PhysRevLett.100.240604.
6
Recent advances in optical tweezers.光镊技术的最新进展。
Annu Rev Biochem. 2008;77:205-28. doi: 10.1146/annurev.biochem.77.043007.090225.
9
Motion of a colloidal particle in an optical trap.胶体粒子在光阱中的运动。
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Jul;76(1 Pt 1):011112. doi: 10.1103/PhysRevE.76.011112. Epub 2007 Jul 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验