Suppr超能文献

领导者-跟随者行为的连续体模型中的孤子近似。

Soliton approximation in continuum models of leader-follower behavior.

机构信息

Gregorio Millán Institute for Fluid Dynamics, Nanoscience and Industrial Mathematics, Universidad Carlos III de Madrid, 28911 Leganés, Spain.

Department of Mathematics, Universidad Carlos III de Madrid, 28911 Leganés, Spain.

出版信息

Phys Rev E. 2023 Nov;108(5-1):054407. doi: 10.1103/PhysRevE.108.054407.

Abstract

Complex biological processes involve collective behavior of entities (bacteria, cells, animals) over many length and time scales and can be described by discrete models that track individuals or by continuum models involving densities and fields. We consider hybrid stochastic agent-based models of branching morphogenesis and angiogenesis (new blood vessel creation from preexisting vasculature), which treat cells as individuals that are guided by underlying continuous chemical and/or mechanical fields. In these descriptions, leader (tip) cells emerge from existing branches and follower (stalk) cells build the new sprout in their wake. Vessel branching and fusion (anastomosis) occur as a result of tip and stalk cell dynamics. Coarse graining these hybrid models in appropriate limits produces continuum partial differential equations (PDEs) for endothelial cell densities that are more analytically tractable. While these models differ in nonlinearity, they produce similar equations at leading order when chemotaxis is dominant. We analyze this leading order system in a simple quasi-one-dimensional geometry and show that the numerical solution of the leading order PDE is well described by a soliton wave that evolves from vessel to source. This wave is an attractor for intermediate times until it arrives at the hypoxic region releasing the growth factor. The mathematical techniques used here thus identify common features of discrete and continuum approaches and provide insight into general biological mechanisms governing their collective dynamics.

摘要

复杂的生物过程涉及实体(细菌、细胞、动物)在多个长度和时间尺度上的集体行为,可以通过跟踪个体的离散模型或涉及密度和场的连续模型来描述。我们考虑分支形态发生和血管生成(从现有脉管系统创建新血管)的混合随机基于代理的模型,该模型将细胞视为受潜在连续化学和/或机械场引导的个体。在这些描述中,先导(尖端)细胞从现有分支中出现,而跟随(茎干)细胞在其后面构建新的芽。由于尖端和茎干细胞的动力学,血管分支和融合(吻合)发生。在适当的限制下对这些混合模型进行粗粒化会产生内皮细胞密度的连续偏微分方程(PDE),这些方程更易于分析。虽然这些模型在非线性方面有所不同,但在趋化性占主导地位时,它们在领先阶产生相似的方程。我们在简单的准一维几何形状中分析这个领先阶系统,并表明领先阶 PDE 的数值解很好地由从血管到源的孤子波描述。该波是中间时间的吸引子,直到它到达缺氧区域释放生长因子。这里使用的数学技术因此可以识别离散和连续方法的共同特征,并深入了解控制其集体动力学的一般生物学机制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验